Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Tanha, Mozhdeh"
Sort by:
A hybrid meta-heuristic task scheduling algorithm based on genetic and thermodynamic simulated annealing algorithms in cloud computing environments
Cloud providers deliver heterogeneous virtual machines to run complicated jobs submitted by users. The task scheduling issue is formulated to a discrete optimization problem which is well-known NP-Hard. This paper presents a hybrid meta-heuristic algorithm based on genetic and thermodynamic simulated annealing algorithms to solve this problem. In the proposed algorithm, the genetic and simulated annealing algorithms have respective global and local search inclinations covering each other's shortcomings. A novel theorem is presented and applied to produce a semi-conducted initial population. In a used genetic algorithm with a global trend, the crossover operator is performed to explore search space. The thermodynamic simulated annealing algorithm is utilized to improve the efficiency, which considers entropy and energy difference concepts in the cooling schedule process. After obtaining a suitable solution, one of the three novel neighbor operators is randomly called to enhance the given solution potentially. In this way, the efficient balance between exploration and exploitation in the search space is achieved. Simulation results prove that the proposed hybrid algorithm has 10.17%, 9.31%, 7.76%, and 8.21% dominance in terms of makespan, schedule length ratio, speedup, and efficiency against other comparative algorithms.