Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47 result(s) for "Tapper, Nigel"
Sort by:
Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments
Urban street trees provide many environmental, social, and economic benefits for our cities. This research explored the role of street trees in Melbourne, Australia, in cooling the urban microclimate and improving human thermal comfort (HTC). Three east–west (E–W) oriented streets were studied in two contrasting street canyon forms (deep and shallow) and between contrasting tree canopy covers (high and low). These streets were instrumented with multiple microclimate monitoring stations to continuously measure air temperature, humidity, solar radiation, wind speed and mean radiant temperature so as to calculate the Universal Thermal Climate Index (UTCI) from May 2011 to June 2013, focusing on summertime conditions and heat events. Street trees supported average daytime cooling during heat events in the shallow canyon by around 0.2 to 0.6 °C and up to 0.9 °C during mid-morning (9:00–10:00). Maximum daytime cooling reached 1.5 °C in the shallow canyon. The influence of street tree canopies in the deep canyon was masked by the shading effect of the tall buildings. Trees were very effective at reducing daytime UTCI in summer largely through a reduction in mean radiant temperature from shade, lowering thermal stress from very strong (UTCI > 38 °C) down to strong (UTCI > 32 °C). The influence of street trees on canyon air temperature and HTC was highly localized and variable, depending on tree cover, geometry, and prevailing meteorological conditions. The cooling benefit of street tree canopies increases as street canyon geometry shallows and broadens. This should be recognized in the strategic placement, density of planting, and species selection of street trees.
Connections of climate change and variability to large and extreme forest fires in southeast Australia
The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was characterised by exceptionally dry fuel loads that primed the landscape to burn when exposed to dangerous fire weather and ignition. The combination of climate variability and long-term climate trends generated the climate extremes experienced in 2019, and the compounding effects of two or more modes of climate variability in their fire-promoting phases (as occurred in 2019) has historically increased the chances of large forest fires occurring in southeast Australia. Palaeoclimate evidence also demonstrates that fire-promoting phases of tropical Pacific and Indian ocean variability are now unusually frequent compared with natural variability in pre-industrial times. Indicators of forest fire danger in southeast Australia have already emerged outside of the range of historical experience, suggesting that projections made more than a decade ago that increases in climate-driven fire risk would be detectable by 2020, have indeed eventuated. The multiple climate change contributors to fire risk in southeast Australia, as well as the observed non-linear escalation of fire extent and intensity, raise the likelihood that fire events may continue to rapidly intensify in the future. Improving local and national adaptation measures while also pursuing ambitious global climate change mitigation efforts would provide the best strategy for limiting further increases in fire risk in southeast Australia. Multiple climate contributors to fire risk in southeast Australia have led to an increase in fire extent and intensity over the past decades that will likely continue into the future, suggests a synthesis of climate variability, long-term trends and palaeoclimatic evidence.
Watering our cities
Urban drainage infrastructure is generally designed to rapidly export stormwater away from the urban environment to minimize flood risk created by extensive impervious surface cover. This deficit is resolved by importing high-quality potable water for irrigation. However, cities and towns at times face water restrictions in response to drought and water scarcity. This can exacerbate heating and drying, and promote the development of unfavourable urban climates. The combination of excessive heating driven by urban development, low water availability and future climate change impacts could compromise human health and amenity for urban dwellers. This paper draws on existing literature to demonstrate the potential of Water Sensitive Urban Design (WSUD) to help improve outdoor human thermal comfort in urban areas and support Climate Sensitive Urban Design (CSUD) objectives within the Australian context. WSUD provides a mechanism for retaining water in the urban landscape through stormwater harvesting and reuse while also reducing urban temperatures through enhanced evapotranspiration and surface cooling. Research suggests that WSUD features are broadly capable of lowering temperatures and improving human thermal comfort, and when integrated with vegetation (especially trees) have potential to meet CSUD objectives. However, the degree of benefit (the intensity of cooling and improvements to human thermal comfort) depends on a multitude of factors including local environmental conditions, the design and placement of the systems, and the nature of the surrounding urban landscape. We suggest that WSUD can provide a source of water across Australian urban environments for landscape irrigation and soil moisture replenishment to maximize the urban climatic benefits of existing vegetation and green spaces. WSUD should be implemented strategically into the urban landscape, targeting areas of high heat exposure, with many distributed WSUD features at regular intervals to promote infiltration and evapotranspiration, and maintain tree health.
relationship between housing and heat wave resilience in older people
Older people have justifiably been highlighted as a high-risk group with respect to heat wave mortality and morbidity. However, there are older people living within the community who have developed adaptive and resilient environments around their home that provide some protection during periods of extreme heat. This study investigated the housing stock and self-reported thermal comfort of a group of older people living in a regional town in Australia during the summer of 2012. The results indicated that daily maximum living room temperature was not significantly correlated with outdoor temperature, and daily minimum living room temperature was very weakly correlated with outdoor temperature. Residents reported feeling comfortable when indoor temperature approximated 26 °C. As living room temperature increased, indoor thermal comfort decreased. Significant differences between indoor temperatures were noted for homes that were related to house characteristics such as the age of the house, the number of air-conditioning units, the pitch of the roof, home insulation and the number of heat-mitigation modifications made to the home. Brick veneer homes showed smaller diurnal changes in temperature than other building materials. With population ageing and the increasing focus on older people living in the community, the quality of the housing stock available to them will influence their risk of heat exposure during extreme weather.
Use of Cool Roofs and Vegetation to Mitigate Urban Heat and Improve Human Thermal Stress in Melbourne, Australia
The ability of cool roofs and vegetation to reduce urban temperatures and improve human thermal stress during heat wave conditions is investigated for the city of Melbourne, Australia. The Weather Research and Forecasting Model coupled to the Princeton Urban Canopy Model is employed to simulate 11 scenarios of cool roof uptake across the city, increased vegetation cover across the city, and a combination of these strategies. Cool roofs reduce urban temperatures during the day, and, if they are installed across enough rooftops, their cooling effect extends to the night. In contrast, increasing vegetation coverage reduces nighttime temperatures but results in minimal cooling during the hottest part of the day. The combination of cool roofs and increased vegetation scenarios creates the largest reduction in temperature throughout the heat wave, although the relationship between the combination scenarios is nonsynergistic. This means that the cooling occurring from the combination of both strategies is either larger or smaller than if the cooling from individual strategies were to be added together. The drier, lower-density western suburbs of Melbourne showed a greater cooling response to increased vegetation without enhancing human thermal stress due to the corresponding increase in humidity. The leafy medium-density eastern suburbs of Melbourne showed a greater cooling response to the installation of cool roofs. These results highlight that the optimal urban cooling strategies can be different across a single urban center.
The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment
Prolonged drought has threatened traditional potable urban water supplies in Australian cities, reducing capability to adapt to climate change and mitigate against extreme. Integrated urban water management (IUWM) approaches, such as water sensitive urban design (WSUD), reduce the reliance on centralised potable water supply systems and provide a means for retaining water in the urban environment through stormwater harvesting and reuse. This study examines the potential for WSUD to provide cooling benefits and reduce human exposure and heat stress and thermal discomfort. A high-resolution observational field campaign, measuring surface level microclimate variables and remotely sensed land surface characteristics, was conducted in a mixed residential suburb containing WSUD in Adelaide, South Australia. Clear evidence was found that WSUD features and irrigation can reduce surface temperature (Ts) and air temperature (Ta) and improve human thermal comfort (HTC) in urban environments. The average 3 pm Ta near water bodies was found to be up to 1.8 °C cooler than the domain maximum. Cooling was broadly observed in the area 50 m downwind of lakes and wetlands. Design and placement of water bodies were found to affect their cooling effectiveness. HTC was improved by proximity to WSUD features, but shading and ventilation were also effective at improving thermal comfort. This study demonstrates that WSUD can be used to cool urban microclimates, while simultaneously achieving other environmental benefits, such as improved stream ecology and flood mitigation.
An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0)
Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort, and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects, and many recent developments of urban climate models focus on the inclusion of green and blue infrastructure to inform urban planning. However, many models still lack the ability to account for different plant types and oversimplify the interactions between the built environment, vegetation, and hydrology. In this study, we present an urban ecohydrological model, Urban Tethys-Chloris (UT&C), that combines principles of ecosystem modelling with an urban canopy scheme accounting for the biophysical and ecophysiological characteristics of roof vegetation, ground vegetation, and urban trees. UT&C is a fully coupled energy and water balance model that calculates 2 m air temperature, 2 m humidity, and surface temperatures based on the infinite urban canyon approach. It further calculates the urban hydrological fluxes in the absence of snow, including transpiration as a function of plant photosynthesis. Hence, UT&C accounts for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements of eddy-covariance towers located in three cities in different climates (Singapore, Melbourne, and Phoenix). A sensitivity analysis, performed as a proof of concept for the city of Singapore, shows a mean decrease in 2 m air temperature of 1.1 ∘C for fully grass-covered ground, 0.2 ∘C for high values of leaf area index (LAI), and 0.3 ∘C for high values of Vc,max (an expression of photosynthetic capacity). These reductions in temperature were combined with a simultaneous increase in relative humidity by 6.5 %, 2.1 %, and 1.6 %, for fully grass-covered ground, high values of LAI, and high values of Vc,max, respectively. Furthermore, the increase of pervious vegetated ground is able to significantly reduce surface runoff.
Impact of Increasing Urban Density on Local Climate
Variations in urban surface characteristics are known to alter the local climate through modification of land surface processes that influence the surface energy balance and boundary layer and lead to distinct urban climates. In Melbourne, Australia, urban densities are planned to increase under a new strategic urban plan. Using the eddy covariance technique, this study aimed to determine the impact of increasing housing density on the surface energy balance and to investigate the relationship to Melbourne’s local climate. Across four sites of increasing housing density and varying land surface characteristics (three urban and one rural), it was found that the partitioning of available energy was similar at all three urban sites. Bowen ratios were consistently greater than 1 throughout the year at the urban sites (often as high as 5) and were higher than the rural site (less than 1) because of reduced evapotranspiration. The greatest difference among sites was seen in urban heat storage, which was influenced by urban canopy complexity, albedo, and thermal admittance. Resulting daily surface temperatures were therefore different among the urban sites, yet differences in above-canopy daytime air temperatures were small because of similar energy partitioning and efficient mixing. However, greater nocturnal temperatures were observed with increasing density as a result of variations in heat storage release that are in part due to urban canyon morphology. Knowledge of the surface energy balance is imperative for urban planning schemes because there is a possibility for manipulation of land surface characteristics for improved urban climates.
Weekly cycles in peak time temperatures and urban heat island intensity
Regular diurnal and weekly cycles (WCs) in temperature provide valuable insights into the consequences of anthropogenic activity on the urban environment. Different locations experience a range of identified WCs and have very different structures. Two important sources of urban heat are those associated with the effect of large urban structures on the radiation budget and energy storage and those from the heat generated as a consequence of anthropogenic activity. The former forcing will remain relatively constant, but a WC will appear in the latter. WCs for specific times of day and the urban heat island (UHI) have not been analysed heretofore. We use three-hourly surface (2 m) temperature data to analyse the WCs of seven major Australian cities at different times of day and to determine to what extent one of our major city's (Melbourne) UHI exhibits a WC. We show that the WC of temperature in major cities differs according to the time of day and that the UHI intensity of Melbourne is affected on a WC. This provides crucial information that can contribute toward the push for healthier urban environments in the face of a more extreme climate.
Is the urban heat island exacerbated during heatwaves in southern Australian cities?
The extra-tropical Australian cities of Melbourne, Adelaide, and Perth are all affected by summer heatwaves and the urban heat island (UHI) effect. While research has been undertaken on both phenomena individually, they have not been studied in tandem in Australia. This research investigates the relationship between warm season heatwaves (November to March) and the UHI from January 1995 to March 2014. Observational temperature data from six or seven Bureau of Meteorology Automatic Weather Stations in each of Melbourne, Adelaide, and Perth are used to determine the strength of the UHI during heatwave periods and these are compared to non-heatwave periods. Melbourne and Adelaide both experience an exacerbated (warmer than normal) UHI at night during heatwaves. The night-time UHI in Perth is diminished (cooler than normal) during heatwaves and often changes to an urban cool island (UCI), when compared to non-heatwave periods. Environmental factors that might affect the strength of the UHI are investigated, including wind speed and direction, and station location. Despite the proximity of all stations to the coast, coastal influences on UHI strength are minimal during heatwave conditions. Station choice is found to not affect our results, with the characteristic pattern of the UHI during heatwaves remaining consistent across all three cities in a leave-one-out sensitivity analysis.