Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18
result(s) for
"Tarn, Mark D."
Sort by:
The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
2019
Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-rich feldspar (K-feldspar) has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice-nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust, it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 ∘C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. For example, the ice-nucleation temperatures for one quartz sample shift down by ∼2 ∘C in 1 h and 12 ∘C after 16 months in water. The sensitivity to water and air is perhaps surprising, as quartz is thought of as a chemically resistant mineral, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the mineral. We find that the quartz group of minerals is generally less active than K-feldspars by roughly 7 ∘C, although the most active quartz samples are of a similar activity to some K-feldspars with an active site density, ns(T), of 1 cm−2 at −9 ∘C. We also find that the freshly milled quartz samples are generally more active by roughly 5 ∘C than the plagioclase feldspar group of minerals and the albite end member has an intermediate activity. Using both the new and literature data, active site density parameterizations have been proposed for freshly milled quartz, K-feldspar, plagioclase and albite. Combining these parameterizations with the typical atmospheric abundance of each mineral supports previous work that suggests that K-feldspar is the most important ice-nucleating mineral in airborne mineral dust.
Journal Article
On-chip processing of particles and cells via multilaminar flow streams
by
Lopez-Martinez, Maria J.
,
Tarn, Mark D.
,
Pamme, Nicole
in
ABC Highlights: authored by Rising Stars and Top Experts
,
Analysis
,
Analytical Chemistry
2014
The processing of particles, cells, and droplets for reactions, analyses, labeling, and coating is an important aspect of many microfluidic workflows. However, performing multi-step processes is typically a laborious and time-consuming endeavor. By exploiting the laminar nature of flow within microchannels, such procedures can benefit in terms of both speed and simplicity. This can be achieved either by manipulating the flow streams around the objects of interest, particularly for the localized perfusion of cells, or by manipulating the objects themselves within the streams via a range of forces. Here, we review the variety of methods that have been employed for performing such “multilaminar flow” procedures on particles, cells, and droplets.
Journal Article
An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing
2018
Low concentrations of ice-nucleating particles (INPs) are thought to be important for the properties of mixed-phase clouds, but their detection is challenging. Hence, there is a need for instruments where INP concentrations of less than 0.01 L−1 can be routinely and efficiently determined. The use of larger volumes of suspension in drop assays increases the sensitivity of an experiment to rarer INPs or rarer active sites due to the increase in aerosol or surface area of particulates per droplet. Here we describe and characterise the InfraRed-Nucleation by Immersed Particles Instrument (IR-NIPI), a new immersion freezing assay that makes use of IR emissions to determine the freezing temperature of individual 50 µL droplets each contained in a well of a 96-well plate. Using an IR camera allows the temperature of individual aliquots to be monitored. Freezing temperatures are determined by detecting the sharp rise in well temperature associated with the release of heat caused by freezing. In this paper we first present the calibration of the IR temperature measurement, which makes use of the fact that following ice nucleation aliquots of water warm to the ice–liquid equilibrium temperature (i.e. 0 ∘C when water activity is ∼1), which provides a point of calibration for each individual well in each experiment. We then tested the temperature calibration using ∼100 µm chips of K-feldspar, by immersing these chips in 1 µL droplets on an established cold stage (µL-NIPI) as well as in 50 µL droplets on IR-NIPI; the results were consistent with one another, indicating no bias in the reported freezing temperature. In addition we present measurements of the efficiency of the mineral dust NX-illite and a sample of atmospheric aerosol collected on a filter in the city of Leeds. NX-illite results are consistent with literature data, and the atmospheric INP concentrations were in good agreement with the results from the µL-NIPI instrument. This demonstrates the utility of this approach, which offers a relatively high throughput of sample analysis and access to low INP concentrations.
Journal Article
Homogeneous Freezing of Water Using Microfluidics
2021
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of −35.1 to −36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice–supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m−2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.
Journal Article
Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles
by
Tarn, Mark D.
,
Pamme, Nicole
,
Vojtíšek, Martin
in
Analytical Chemistry
,
Biomedical Engineering and Bioengineering
,
Bubbles
2012
Superconducting magnets enable the study of high magnetic fields on materials and objects, for example in material synthesis, self-assembly or levitation experiments. The setups employed often lack in precise spatial control of the object of interest within the bore of the magnet. Microfluidic technology enables accurate manipulation of fluidic surroundings and we have investigated the integration of microfluidic devices into superconducting magnets to enable controlled studies of objects in high magnetic fields. Polymeric microparticles similar in size to biological cells were manipulated via diamagnetic repulsion. The particles were suspended in an aqueous paramagnetic medium of manganese (II) chloride and pumped into a microfluidic chip, where they were repelled in continuous flow by the high magnetic field. The extent of deflection was studied as a function of increasing (1) particle size, (2) paramagnetic salt concentration, and (3) magnetic field strength. Optimizing these parameters allowed for the spatial separation of two particle populations via on-chip free-flow diamagnetophoresis. Finally, preliminary findings on the repulsion of air bubbles are shown.
Journal Article
Microfluidic platforms for performing surface-based clinical assays
2011
The need for fast, specific and portable diagnostic systems for clinical assays has, in recent years, led to an explosion of research into microfluidic chip-based immunoassays towards rapid point-of-care analysis. Such devices exploit small dimensions, superior fluidic control and low reagent volumes to allow a number of clinically important procedures to be achieved with improvements on conventional methods, many of which rely on the surface-based binding of antigens to antibodies. Here, we discuss recent developments and innovations in the area of on-chip surface-based immunoassays and provide an outlook on the potential of such platforms for future diagnostics.
Journal Article
Magnetic Particle Plug-Based Assays for Biomarker Analysis
by
Tarn, Mark
,
Pamme, Nicole
,
Phurimsak, Chayakom
in
Assaying
,
Biomarkers
,
C-reactive protein (CRP)
2016
Conventional immunoassays offer selective and quantitative detection of a number of biomarkers, but are laborious and time-consuming. Magnetic particle-based assays allow easy and rapid selection of analytes, but still suffer from the requirement of tedious multiple reaction and washing steps. Here, we demonstrate the trapping of functionalised magnetic particles within a microchannel for performing rapid immunoassays by flushing consecutive reagent and washing solutions over the trapped particle plug. Three main studies were performed to investigate the potential of the platform for quantitative analysis of biomarkers: (i) a streptavidin-biotin binding assay; (ii) a sandwich assay of the inflammation biomarker, C-reactive protein (CRP); and (iii) detection of the steroid hormone, progesterone (P4), towards a competitive assay. Quantitative analysis with low limits of detection was demonstrated with streptavidin-biotin, while the CRP and P4 assays exhibited the ability to detect clinically relevant analytes, and all assays were completed in only 15 min. These preliminary results show the great potential of the platform for performing rapid, low volume magnetic particle plug-based assays of a range of clinical biomarkers via an exceedingly simple technique.
Journal Article
An evaluation of the heat test for the ice-nucleating ability of minerals and biological material
by
Whale, Thomas F.
,
Murray, Benjamin J.
,
Tarn, Mark D.
in
Aerosol particles
,
Aerosols
,
Analysis
2022
Ice-nucleating particles (INPs) are atmospheric aerosol particles that can strongly influence the radiative properties and precipitation onset in mixed-phase clouds by triggering ice formation in supercooled cloud water droplets. The ability to distinguish between INPs of mineral and biological origin in samples collected from the environment is needed to better understand their distribution and sources. A common method for assessing the relative contributions of mineral and biogenic INPs in samples collected from the environment (e.g. aerosol, rainwater, soil) is to determine the ice-nucleating ability (INA) before and after heating, where heat is expected to denature proteins associated with some biological ice nucleants. The key assumption is that the ice nucleation sites of biological origin are denatured by heat, while those associated with mineral surfaces remain unaffected; we test this assumption here. We exposed atmospherically relevant mineral samples to wet heat (INP suspensions warmed to above 90 ∘C) or dry heat (dry samples heated up to 250 ∘C) and assessed the effects on their immersion mode INA using a droplet freezing assay. K-feldspar, thought to be the dominant mineral-based atmospheric INP type where present, was not significantly affected by wet heating, while quartz, plagioclase feldspars and Arizona Test Dust (ATD) lost INA when heated in this mode. We argue that these reductions in INA in the aqueous phase result from direct alteration of the mineral particle surfaces by heat treatment rather than from biological or organic contamination. We hypothesise that degradation of active sites by dissolution of mineral surfaces is the mechanism in all cases due to the correlation between mineral INA deactivation magnitudes and their dissolution rates. Dry heating produced minor but repeatable deactivations in K-feldspar particles but was generally less likely to deactivate minerals compared to wet heating. We also heat-tested biogenic INP proxy materials and found that cellulose and pollen washings were relatively resistant to wet heat. In contrast, bacterially and fungally derived ice-nucleating samples were highly sensitive to wet heat as expected, although their activity remained non-negligible after wet heating. Dry heating at 250 ∘C leads to deactivation of all biogenic INPs. However, the use of dry heat at 250 ∘C for the detection of biological INPs is limited since K-feldspar's activity is also reduced under these conditions. Future work should focus on finding a set of dry heat conditions where all biological material is deactivated, but key mineral types are not. We conclude that, while wet INP heat tests at (>90 ∘C) have the potential to produce false positives, i.e. deactivation of a mineral INA that could be misconstrued as the presence of biogenic INPs, they are still a valid method for qualitatively detecting very heat-sensitive biogenic INPs in ambient samples if the mineral-based INA is controlled by K-feldspar.
Journal Article
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
2024
The global variation in ice-nucleating particle (INP) concentrations is an important modulator of the cloud-phase feedback, where the albedo of mixed-phase clouds increases in a warming climate. Shallow clouds, such as those observed in cold-air outbreaks (CAOs), are particularly important for cloud-phase feedbacks and highly sensitive to INPs. To investigate the sources and concentrations of INPs in CAOs, we made airborne measurements over the Norwegian and Barents seas as part of the March 2022 Arctic Cold-Air Outbreak (ACAO) field campaign. Aerosol samples were collected on filters at locations above, below and upstream of CAO cloud decks. Throughout the campaign, INP concentrations were comparable to the highest concentrations previously observed in the Arctic. Scanning electron microscopy analysis of samples taken upstream of cloud decks showed that supermicron aerosol was dominated by mineral dusts. Analysis of aerosol particle size measurements to obtain an INP active site density suggested sea spray was unlikely to be the dominant INP type. These site densities were also too great for mineral components alone to be the dominant INP type above −20 °C. Accordingly, it is likely that the dominant INP type was mineral dust mixed with other ice-nucleating materials, possibly of biogenic origin. Back-trajectory analysis and meteorological conditions suggested a lack of local INP sources. We therefore hypothesise that the high INP concentration is most likely to be associated with aged aerosol in Arctic haze that has undergone long-range transport from lower-latitude regions.
Journal Article
The ice-nucleating activity of African mineral dust in the Caribbean boundary layer
by
Pöhlker, Christopher
,
Murray, Benjamin J.
,
Harrison, Alexander D.
in
Aerosols
,
Atmosphere
,
Atmospheric models
2022
African mineral dust is transported many thousands of kilometres from its source regions, and, because of its ability to nucleate ice, it plays a major role in cloud glaciation around the globe. The ice-nucleating activity of desert dust is influenced by its mineralogy, which varies substantially between source regions and across particle sizes. However, in models it is often assumed that the activity (expressed as active sites per unit surface area as a function of temperature) of atmospheric mineral dust is the same everywhere on the globe. Here, we find that the ice-nucleating activity of African desert dust sampled in the summertime marine boundary layer of Barbados (July and August 2017) is substantially lower than parameterizations based on soil from specific locations in the Sahara or dust sedimented from dust storms. We conclude that the activity of dust in Barbados' boundary layer is primarily defined by the low K-feldspar content of the dust, which is around 1 %. We propose that the dust we sampled in the Caribbean was from a region in western Africa (in and around the Sahel in Mauritania and Mali), which has a much lower feldspar content than other African sources across the Sahara and Sahel.
Journal Article