Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
264
result(s) for
"Tarucha, S."
Sort by:
Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene
2015
Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature.
The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents
1
. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical
2
,
3
,
4
,
5
, magnetic
6
,
7
,
8
,
9
and electrical control of the valley degree of freedom
10
,
11
,
12
. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Journal Article
Quantum non-demolition readout of an electron spin in silicon
2020
While single-shot detection of silicon spin qubits is now a laboratory routine, the need for quantum error correction in a large-scale quantum computing device demands a quantum non-demolition (QND) implementation. Unlike conventional counterparts, the QND spin readout imposes minimal disturbance to the probed spin polarization and can therefore be repeated to extinguish measurement errors. Here, we show that an electron spin qubit in silicon can be measured in a highly non-demolition manner by probing another electron spin in a neighboring dot Ising-coupled to the qubit spin. The high non-demolition fidelity (99% on average) enables over 20 readout repetitions of a single spin state, yielding an overall average measurement fidelity of up to 95% within 1.2 ms. We further demonstrate that our repetitive QND readout protocol can realize heralded high-fidelity (>99.6%) ground-state preparation. Our QND-based measurement and preparation, mediated by a second qubit of the same kind, will allow for a wide class of quantum information protocols with electron spins in silicon without compromising the architectural homogeneity.
Conventional qubit readout methods in silicon spin qubits destroy the quantum state, precluding any further computations based on the outcome. Here, the authors demonstrate quantum non-demolition readout using a second qubit of the same kind, making for a scalable approach.
Journal Article
4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions
by
Oiwa, A.
,
Brüne, C.
,
Molenkamp, L. W.
in
142/126
,
639/301/119/1003
,
Humanities and Social Sciences
2016
The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced
p
-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4
π
-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4
π
-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.
A material weakly linking two superconductors may itself exhibit superconductivity whilst its material properties strongly influence the nature of the supercurrent. Here, the authors identify a supercurrent with
p
-wave symmetry in such a Josephson junction made of topologically non-trivial material.
Journal Article
Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions
by
Domínguez, F.
,
Tarucha, S.
,
Ishibashi, K.
in
Aluminum
,
Antiparticles
,
Condensed matter physics
2017
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ . Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3–4 ns for the fJ/2 line, much shorter than for the fJ line (3–4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.
Journal Article
Noise-correlation spectrum for a pair of spin qubits in silicon
2023
Semiconductor qubits have a small footprint and so are appealing for building densely integrated quantum processors. However, fabricating them at high densities raises the issue of noise correlated across different qubits, which is of practical concern for scalability and fault tolerance. Here, we analyse and quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits around 100 nm apart. We observe strong interqubit noise correlations with a correlation strength as large as 0.7 at around 1 Hz, even in the regime where the spin–spin exchange interaction contributes negligibly. We find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, showing that they have an electrical origin. Noise cross-correlations have thus enabled us to pinpoint the most influential noise in our device. Our work presents a powerful tool set to assess and identify the noise acting on multiple qubits and highlights the importance of long-range electric noise in densely packed silicon spin qubits.Errors in a quantum computer that are correlated between different qubits pose a considerable challenge for correction schemes. Measurements of noise in silicon spin qubits show that electric field fluctuations can create strongly correlated errors.
Journal Article
Supercurrent in the quantum Hall regime
2016
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.
Journal Article
Cooper pair splitting in parallel quantum dot Josephson junctions
2015
Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair.
Spin-entangled electron pairs are one possible resource for future solid-state quantum information processing systems. Here, the authors directly prove spin entanglement between two electrons that had previously been a Cooper pair in a superconducting lead but were split using two quantum dots.
Journal Article
Cooper-pair splitting in two parallel InAs nanowires
by
Baba, S
,
Jünger, C
,
Jeppesen, S
in
Andreev transport
,
Condensed Matter Physics (including Material Physics, Nano Physics)
,
Cooper pairs
2018
We report on the fabrication and electrical characterization of an InAs double-nanowire (NW) device consisting of two closely placed parallel NWs coupled to a common superconducting electrode on one side and individual normal metal leads on the other. In this new type of device we detect Cooper-pair splitting (CPS) with a sizeable efficiency of correlated currents in both NWs. In contrast to earlier experiments, where CPS was realized in a single NW, demonstrating an intrawire electron pairing mediated by the superconductor (SC), our experiment demonstrates an interwire interaction mediated by the common SC. The latter is the key for the realization of zero-magnetic field Majorana bound states, or Parafermions; in NWs and therefore constitutes a milestone towards topological superconductivity. In addition, we observe transport resonances that occur only in the superconducting state, which we tentatively attribute to Andreev bound states and/or Yu-Shiba resonances that form in the proximitized section of one NW.
Journal Article
Fast spin information transfer between distant quantum dots using individual electrons
2016
Information stored in the spin of individual electrons is transferred between distant quantum dots via surface acoustic waves.
Transporting ensembles of electrons over long distances without losing their spin polarization is an important benchmark for spintronic devices. It usually requires injecting and probing spin-polarized electrons in conduction channels using ferromagnetic contacts
1
,
2
or optical excitation
3
,
4
,
5
. In parallel with this development, important efforts have been dedicated to achieving control of nanocircuits at the single-electron level. The detection and coherent manipulation of the spin of a single electron trapped in a quantum dot are now well established
6
,
7
,
8
. Combined with the recently demonstrated control of the displacement of individual electrons between two distant quantum dots
9
,
10
, these achievements allow the possibility of realizing spintronic protocols at the single-electron level. Here, we demonstrate that spin information carried by one or two electrons can be transferred between two quantum dots separated by a distance of 4 μm with a classical fidelity of 65%. We show that at present it is limited by spin flips occurring during the transfer procedure before and after electron displacement. Being able to encode and control information in the spin degree of freedom of a single electron while it is being transferred over distances of a few micrometres on nanosecond timescales will pave the way towards ‘quantum spintronics’ devices, which could be used to implement large-scale spin-based quantum information processing.
Journal Article
Trilayer graphene is a semimetal with a gate-tunable band overlap
2009
Graphene-based materials are promising candidates for nanoelectronic devices
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
because very high carrier mobilities can be achieved without the use of sophisticated material preparation techniques
1
. However, the carrier mobilities reported for single-layer and bilayer graphene are still less than those reported for graphite crystals at low temperatures, and the optimum number of graphene layers for any given application is currently unclear, because the charge transport properties of samples containing three or more graphene layers have not yet been investigated systematically
1
. Here, we study charge transport through trilayer graphene as a function of carrier density, temperature, and perpendicular electric field. We find that trilayer graphene is a semimetal with a resistivity that decreases with increasing electric field, a behaviour that is markedly different from that of single-layer and bilayer graphene. We show that the phenomenon originates from an overlap between the conduction and valence bands that can be controlled by an electric field, a property that had never previously been observed in any other semimetal. We also determine the effective mass of the charge carriers, and show that it accounts for a large part of the variation in the carrier mobility as the number of layers in the sample is varied.
The electronic properties of graphene samples containing three layers of carbon atoms are significantly different from those of single-layer and bilayer graphene. Trilayer graphene is a semimetal and, unlike other materials, the overlap between the conduction and valence bands can be electrostatically controlled.
Journal Article