Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,520 result(s) for "Tavares, R."
Sort by:
Information security handbook
\"This handbook provides a comprehensive collection of knowledge for emerging multidisciplinary research areas such as cybersecurity, IoT, Blockchain, Machine Learning, Data Science, and AI. This book brings together in one resource Information security across multiple domains. Information Security Handbook addresses the knowledge for emerging multidisciplinary research. It explores basic and high-level concepts, serves as a manual for industry, while also helping beginners to understand both basic and advanced aspects in security-related issues. The handbook explores security and privacy issues through IoT ecosystem and implications to the real world and at the same time explains the concepts of IoT-related technologies, trends, and future directions. University graduates and postgraduates, as well as research scholars, developers, and end-users, will find this handbook very useful\"-- Provided by publisher.
Medical cyber-physical systems: A survey
Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device’s network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included.
Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air
Conventional SO 2 scrubbing agents, namely calcium oxide and zeolites, are often used to remove SO 2 using a strong or irreversible adsorption-based process. However, adsorbents capable of sensing and selectively capturing this toxic molecule in a reversible manner, with in-depth understanding of structure–property relationships, have been rarely explored. Here we report the selective removal and sensing of SO 2 using recently unveiled fluorinated metal–organic frameworks (MOFs). Mixed gas adsorption experiments were performed at low concentrations ranging from 250 p.p.m. to 7% of SO 2 . Direct mixed gas column breakthrough and/or column desorption experiments revealed an unprecedented SO 2 affinity for KAUST-7 (NbOFFIVE-1-Ni) and KAUST-8 (AlFFIVE-1-Ni) MOFs. Furthermore, MOF-coated quartz crystal microbalance transducers were used to develop sensors with the ability to detect SO 2 at low concentrations ranging from 25 to 500 p.p.m. Removal of SO 2 from flue gas is of prime importance to avoid its poisoning of CO 2 -seperating agents. Here, the authors demonstrate that two fluorinated metal–organic frameworks selectively remove SO 2 from synthetic flue gas and can sense SO 2 with p.p.m.-level detection using quartz crystal microbalance transducers.
Sound Classification and Processing of Urban Environments: A Systematic Literature Review
Audio recognition can be used in smart cities for security, surveillance, manufacturing, autonomous vehicles, and noise mitigation, just to name a few. However, urban sounds are everyday audio events that occur daily, presenting unstructured characteristics containing different genres of noise and sounds unrelated to the sound event under study, making it a challenging problem. Therefore, the main objective of this literature review is to summarize the most recent works on this subject to understand the current approaches and identify their limitations. Based on the reviewed articles, it can be realized that Deep Learning (DL) architectures, attention mechanisms, data augmentation techniques, and pretraining are the most crucial factors to consider while creating an efficient sound classification model. The best-found results were obtained by Mushtaq and Su, in 2020, using a DenseNet-161 with pretrained weights from ImageNet, and NA-1 and NA-2 as augmentation techniques, which were of 97.98%, 98.52%, and 99.22% for UrbanSound8K, ESC-50, and ESC-10 datasets, respectively. Nonetheless, the use of these models in real-world scenarios has not been properly addressed, so their effectiveness is still questionable in such situations.
Land Cover Classification Model Using Multispectral Satellite Images Based on a Deep Learning Synergistic Semantic Segmentation Network
Land cover classification (LCC) using satellite images is one of the rapidly expanding fields in mapping, highlighting the need for updating existing computational classification methods. Advances in technology and the increasing variety of applications have introduced challenges, such as more complex classes and a demand for greater detail. In recent years, deep learning and Convolutional Neural Networks (CNNs) have significantly enhanced the segmentation of satellite images. Since the training of CNNs requires sophisticated and expensive hardware and significant time, using pre-trained networks has become widespread in the segmentation of satellite image. This study proposes a hybrid synergistic semantic segmentation method based on the Deeplab v3+ network and a clustering-based post-processing scheme. The proposed method accurately classifies various land cover (LC) types in multispectral satellite images, including Pastures, Other Built-Up Areas, Water Bodies, Urban Areas, Grasslands, Forest, Farmland, and Others. The post-processing scheme includes a spectral bag-of-words model and K-medoids clustering to refine the Deeplab v3+ outputs and correct possible errors. The simulation results indicate that combining the post-processing scheme with deep learning improves the Matthews correlation coefficient (MCC) by approximately 5.7% compared to the baseline method. Additionally, the proposed approach is robust to data imbalance cases and can dynamically update its codewords over different seasons. Finally, the proposed synergistic semantic segmentation method was compared with several state-of-the-art segmentation methods in satellite images of Italy’s Lake Garda (Lago di Garda) region. The results showed that the proposed method outperformed the best existing techniques by at least 6% in terms of MCC.
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.
Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on 123IFP-CIT SPECT images
PurposeThis work aimed to assess the potential of a set of features extracted from [123I]FP-CIT SPECT brain images to be used in the computer-aided “in vivo” confirmation of dopaminergic degeneration and therefore to assist clinical decision to diagnose Parkinson’s disease.MethodsSeven features were computed from each brain hemisphere: five standard features related to uptake ratios on the striatum and two features related to the estimated volume and length of the striatal region with normal uptake. The features were tested on a dataset of 652 [123I]FP-CIT SPECT brain images from the Parkinson’s Progression Markers Initiative. The discrimination capacities of each feature individually and groups of features were assessed using three different machine learning techniques: support vector machines (SVM), k-nearest neighbors and logistic regression.ResultsCross-validation results based on SVM have shown that, individually, the features that generated the highest accuracies were the length of the striatal region (96.5%), the putaminal binding potential (95.4%) and the striatal binding potential (93.9%) with no statistically significant differences among them. The highest classification accuracy was obtained using all features simultaneously (accuracy 97.9%, sensitivity 98% and specificity 97.6%). Generally, slightly better results were obtained using the SVM with no statistically significant difference to the other classifiers for most of the features.ConclusionsThe length of the striatal region uptake is clinically useful and highly valuable to confirm dopaminergic degeneration “in vivo” as an aid to the diagnosis of Parkinson’s disease. It compares fairly well to the standard uptake ratio-based features, reaching, at least, similar accuracies and is easier to obtain automatically. Thus, we propose its day to day clinical use, jointly with the uptake ratio-based features, in the computer-aided diagnosis of dopaminergic degeneration in Parkinson’s disease.
Urban Safety: An Image-Processing and Deep-Learning-Based Intelligent Traffic Management and Control System
With the rapid growth and development of cities, Intelligent Traffic Management and Control (ITMC) is becoming a fundamental component to address the challenges of modern urban traffic management, where a wide range of daily problems need to be addressed in a prompt and expedited manner. Issues such as unpredictable traffic dynamics, resource constraints, and abnormal events pose difficulties to city managers. ITMC aims to increase the efficiency of traffic management by minimizing the odds of traffic problems, by providing real-time traffic state forecasts to better schedule the intersection signal controls. Reliable implementations of ITMC improve the safety of inhabitants and the quality of life, leading to economic growth. In recent years, researchers have proposed different solutions to address specific problems concerning traffic management, ranging from image-processing and deep-learning techniques to forecasting the traffic state and deriving policies to control intersection signals. This review article studies the primary public datasets helpful in developing models to address the identified problems, complemented with a deep analysis of the works related to traffic state forecast and intersection-signal-control models. Our analysis found that deep-learning-based approaches for short-term traffic state forecast and multi-intersection signal control showed reasonable results, but lacked robustness for unusual scenarios, particularly during oversaturated situations, which can be resolved by explicitly addressing these cases, potentially leading to significant improvements of the systems overall. However, there is arguably a long path until these models can be used safely and effectively in real-world scenarios.
Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning
Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.
Transformers for Urban Sound Classification—A Comprehensive Performance Evaluation
Many relevant sound events occur in urban scenarios, and robust classification models are required to identify abnormal and relevant events correctly. These models need to identify such events within valuable time, being effective and prompt. It is also essential to determine for how much time these events prevail. This article presents an extensive analysis developed to identify the best-performing model to successfully classify a broad set of sound events occurring in urban scenarios. Analysis and modelling of Transformer models were performed using available public datasets with different sets of sound classes. The Transformer models’ performance was compared to the one achieved by the baseline model and end-to-end convolutional models. Furthermore, the benefits of using pre-training from image and sound domains and data augmentation techniques were identified. Additionally, complementary methods that have been used to improve the models’ performance and good practices to obtain robust sound classification models were investigated. After an extensive evaluation, it was found that the most promising results were obtained by employing a Transformer model using a novel Adam optimizer with weight decay and transfer learning from the audio domain by reusing the weights from AudioSet, which led to an accuracy score of 89.8% for the UrbanSound8K dataset, 95.8% for the ESC-50 dataset, and 99% for the ESC-10 dataset, respectively.