Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Tayel, Ahmed A."
Sort by:
Antifungal application of biosynthesized selenium nanoparticles with pomegranate peels and nanochitosan as edible coatings for citrus green mold protection
Background Citrus production and trading are seriously affected by fungal decays worldwide; the green mold infection by Penicillium digitatum could be the most disastrous. The substitutions of chemical and synthetic fungicides with effectual natural alternatives are global demands; plant extract from pomegranates peels (PPE), biosynthesized selenium nanoparticles with PPE (PPE/SeNPs) and chitosan nanoparticles (NCT) were suggested as efficacious fungicidal agents/nanocomposites to control P. digitatum strains. Method PPE from Punica granatum was extracted and employed directly for synthesizing SeNPs, whereas NCT was produced using ionic gelation method of chitosan extracted from white prawn ( Fenneropenaeus indicus ) shells. The physiochemical, biochemical and structural characterization of generated molecules were conducted using infra-red spectroscopy, particles’ size (Ps) and charge assessment and electron microscopes imaging. Antifungal potentialities were investigated in vitro and in infected fruits with P. digitatum by applying NCT nanocomposites-based edible coating. Results The synthesis of PPE-synthesized SeNPs and NCT was successfully achieved, the molecular bonding in synthesized agents/composites were proved with infrared spectroscopy to have both biochemical and physical interactions. The nanoparticles had 82.72, 9.41 and 85.17 nm mean diameters for NCT, PPE/SeNPs and NCT/PPE/SeNPs nanocomposites, respectively. The nanoparticles had homogenous spherical shapes and good distribution attributes. The entire agents/nanocomposites exhibited potent fungicidal potentialities toward P. digitatum isolates; NCT/PPE/SeNPs nanocomposite was the most forceful and significantly exceeded the fungicidal action of standard fungicide. The direct treatment of fungal mycelia with NCT/PPE/SeNPs nanocomposite led to remarkable lysis and deformations of P. digitatum hyphae within 12 h of treatment. The coating of infected orange with NCT-based edible coatings reduced the green mold infection signs by 91.7, 95.4 and 100%, for NCT, NCT/PPE and NCT/PPE/SeNPs based coating solutions, respectively. Conclusions NCT, PPE-synthesized SeNPs, and their innovative nanocomposites NCT/PPE/SeNPs are convincingly recommended for formulating effectual antifungal and edible coatings to eliminate postharvest fungal pathogen, both with protection from their invasion or with destructing their existing infections. Graphical Abstract
Green Biosynthesized Selenium Nanoparticles by Cinnamon Extract and Their Antimicrobial Activity and Application as Edible Coatings with Nano-Chitosan
Bioactive nanocomposites were constructed, containing chitosan (Cht), extracted from shrimps’ wastes, and transformed into nanoparticles (NPs) using ionic-gelation. Selenium NPs (Se-NPs) were phytosynthesized using cinnamon (Cinnamomum zeylanicum) bark extract (CIE), characterized and evaluated with Cht-NPs as antimicrobial composites against bacterial food-borne pathogens “Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes” and as potential edible coating (EC) basements. The CIE-phytosynthesized Se-NPs had well-distributed and spherical shapes with 23.2 nm mean diameter. The CIE, CIE/Se-NPs, and innovative CIE/Se/Cht-NP composites exhibited distinguished antibacterial actions toward the entire screened pathogens; CIE/Se/Cht-NP composite was significantly the most potent. The formulated ECs from CIE/Se/Cht-NP nanocomposites had matching antibacterial manner, which was strengthened with CIE/Se-NP percentage increments. Scanning micrographs indicated the attachment of CIE/Se-NPs to bacterial cells to cause their complete lysis and death after 10 h of exposure. CIE/Se/Cht-NP composites are proposed as effectual control agents toward food-borne pathogens using efficient biological carriers and eco-friendly phytosynthesis protocol.
The anticancer activity of fucoidan coated selenium nanoparticles and curcumin nanoparticles against colorectal cancer lines
Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic. The resulted NCur was utilized for the biosynthesis of selenium NPs (SeNPs), then bioactive nanocomposites (NC) from them with fucoidan (Fu) were fabricated and evaluated as candidates to suppress colorectal cancers (CaCo-2 and HT-29) cells. The NCur and NCur-synthesized SeNPs were effectually produced with mean diameters of 34.67 ± 4.32 and 5.17 ± 1.06 nm, respectively. The plain and NCs of Fu/NCur/SeNPs characterization, with infrared spectroscopy and electron microscopy, emphasized their interaction and conjugations. The entire agents/NCs had potent cytotoxic effects against cancers’ lines; the NC of Fu/NCur/SeNPs was the most effectual with IC50 of 10.35 ± 0.83 and 19.44 ± 1.39 mg/L against CaCo-2 and HT-29 cells, respectively, which were significantly exceeded the action of standard cisplatin drug. The NCs led to vigorous DNA damages in CaCo-2 cancerous cells, as proved with comet assay. The ultrastructure imagining (scanning/transmission microscopy) of treated cells with Fu/NCur/SeNPs confirmed the capability of NCs to induce severe apoptosis and deformation signs in cancerous cells. The bio-based constituents of Fu/NCur/SeNPs and advocate their prospective applications for preventing/managing colorectal adenocarcinoma.
Anti-Helicobacter pylori activity of nanocomposites from chitosan/broccoli mucilage/selenium nanoparticles
Helicobacter pylori can infect most people worldwide to cause hazardous consequences to health; the bacteria could not easily be controlled or disinfected. Toward exploring of innovative biocidal nanoformulations to control H. pylori , broccoli seeds ( Brassica oleracea var. italica ) mucilage (MBS) was employed for biosynthesizing selenium nanoparticles (MBS/SeNPs), which was intermingled with chitosan nanoparticles (NCT) to generate bioactive nanocomposites for suppressing H. pylori . The MBS could effectually generate and stabilize SeNPs with 13.61 nm mean diameter, where NCT had 338.52 nm mean diameter and positively charged (+ 39.62 mV). The cross-linkages between NCT-MBS-SeNPs were verified via infrared analysis and the nanocomposites from NCT:MBS/SeNPs at 1:2 (T1), 1:1 (T2) and 2:1 (T3) ratios had mean diameters of 204, 132 and 159 nm, respectively. The entire nanomaterials/composites exhibited potent anti- H. pylori activities using various assaying methods; the T2 nanocomposite was the utmost bactericidal agent with 0.08–0.10 mg/L minimal concentration and 25.9–27.3 mm inhibition zones. The scanning microscopy displayed the ability of nanocomposite to attach the bacterial cells, disrupt their membranes, and completely lyse them within 10 h. The NCT/MBS/SeNPs nanocomposites provided effectual innovative approach to control H. pylori .
Biopreservation of Shrimps Using Composed Edible Coatings from Chitosan Nanoparticles and Cloves Extract
Shrimps are highly valuable and perishable foodstuff that could be rapidly spoiled. Chitosan (Cht) was extracted and transformed into nanoparticles (NPs) via ionic gelation and fortified with cloves (Syzygium aromaticum) buds extract (CLE) for usage as antimicrobial composites against food-borne bacterial pathogens (Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus) and as edible coating (EC) for shrimp (Fenneropenaeus indicus) biopreservation throughout refrigerated storage. The synthesized CLE/Cht-NPs were electrostatically cross-linked and appeared with spherical shapes and homogenized distribution, with 159.4 nm mean size diameter and positive charge of 17.4 mV. The entire agents (Cht-NPs, CLE, and CLE/Cht-NPs) exhibited remarkable antibacterial activities toward all food-borne pathogens; CLE/Cht-NPs were significantly the most forceful. The scanning micrographs of treated S. typhimurium with CLE/Cht-NPs displayed NPs ability to attach and destroy bacterial cells. The ECs-treated shrimps exhibited sharp decrease in microbial groups load (aerobic microorganisms, E. coli, Enterobacteriaceae, and staphylococci) during refrigerated storage (4 ± 1°C) for 10 days. Additionally, the sensorial attributes (appearance, odor, color, and texture) of EC-treated samples preserved their elevated qualities for storage duration. The most effective EC blend contained 1.5% from Cht/NPs and 1.0% from CLE. The CLE/Cht-NPs could be impressively recommended as effectual natural composites for shrimps’ biopreservation during cold storage.
Quality Boost and Shelf-Life Prolongation of African Catfish Fillet Using Lepidium sativum Mucilage Extract and Selenium Nanoparticles
Aiming to boost the catfish fillet quality, the consequences of their treatment with Lepidium sativum seeds mucilage (LSSM) and with LSSM-mediated selenium nanoparticles (LSSM-Se NPs) were investigated. The LSSM assessment for phenolic acids contents emphasized higher concentrations. Green-synthesized Se NPs were conjugated with LSSM to form LSSM-Se NPs and characterized; the NPs had spherical shapes, negatively charged with 15.47 nm mean diameters. Fish fillets were immersed in coating solutions for 2 min, drained, and stored for 25 days at 4°C. The fish groups (C: untreated samples, M: LSSM-treated, and G: LSSM-Se NPs treated) were assessed for their physicochemical, bacteriological, and sensorial attributes. On the 25th day, the samples’ pH values were 6.96, 6.6, and 6.3; TVB-N values were 38.8, 28.4, and 16.4 mg/100 g; TBARS values were 1.7, 0.97, and 0.68 malondialdehyde/kg; and overall acceptability scores were 3.9, 5.6, and 8.3, for C, M and G groups, respectively. At day 16, the psychrophilic bacterial count was 6.2, 4.0, and 3.6 log CFU/g for C, M, and G groups, respectively. The application of LSSM and LSSM-Se NPs is recommended to compose active coatings for quality boost and shelf-life extension of stored catfish fillet.
Application of ZnO Nanoparticles Phycosynthesized with Ulva fasciata Extract for Preserving Peeled Shrimp Quality
Zinc oxide nanoparticles (ZnONPs) were the targets of numerous biological syntheses to attain their precious values in various biomedical fields. The phycosynthesis of ZnONPs were innovatively investigated using cell-free extract of the macroalgae, Ulva fasciata Delile. The phycosynthesized U. fasciata-zinc oxide nanoparticles (UFD-ZnONPs) had 77.81 nm mean size, with flower and sphere shapes and positive zeta potential. The UFD-ZnONPs infra-red analysis indicated their basic components’ cross-linkage. The antibacterial potentialities of UFD-ZnONPs were confirmed, qualitatively and quantitatively, against foodborne microorganisms (Escherichia coli plus Staphylococcus aureus); the bactericidal action was higher for UFD-ZnONPs than the annealed phycosynthesized ZnONPs. The scanning micrographs of S. aureus and E. coli cells treated with UFD-ZnONPs indicated the severe action of nanoparticles to destroy bacterial cells in time-dependent manners. Peeled shrimps (Fenneropenaeus indicus) were biopreservated through refrigerated storage (4 °C) with UFD-ZnONPs based solution for six days. The microbial examination of UFD-ZnONPs -treated shrimps displayed decrease in microbial loads throughout the storage days. Moreover, the UFD-ZnONPs-treated shrimps showed acceptable sensorial attributes (appearance, odor, color and texture) compared to untreated shrimps. UFD-ZnONPs nanocomposite concentration of 3% and 5% could be remarkably suggested as efficient procedure for shrimps’ biopreservation during refrigerated storage regarding sensorial quality and microbial profile of product.
Thyme/garlic essential oils loaded chitosan–alginate nanocomposite: Characterization and antibacterial activities
For controlling pathogenic bacteria using nanopolymer composites with essential oils, the formulation of chitosan/alginate nanocomposites (CS/ALG NCs) loaded with thyme oil, garlic oil, and thyme/garlic oil was investigated. Oils were encapsulated in CS/ALG NCs through oil-in-water emulsification and ionic gelation. The CS/ALG NCs loaded with oils of garlic, thyme, and garlic–thyme complex had mean diameters of 143.8, 173.9, and 203.4 nm, respectively. They had spherical, smooth surfaces, and zeta potential of +28.4 mV for thyme–garlic-loaded CS/ALG NCs. The bactericidal efficacy of loaded NCs with mixed oils outperformed individual loaded oils and ampicillin, against foodborne pathogens. was the most susceptible (with 28.7 mm inhibition zone and 12.5 µg·mL bactericidal concentration), whereas was the most resistant (17.5 µg·mL bactericidal concentration). Scanning electron microscopy images of bacteria treated with NCs revealed strong disruptive effects on and cells; treated cells were totally exploded or lysed within 8 h. These environmentally friendly nanosystems might be a viable alternative to synthetic preservatives and be of interest in terms of health and food safety.
Effectual Anticancer Potentiality of Loaded Bee Venom onto Fungal Chitosan Nanoparticles
Chitosan and its nanoparticles (NPs) could be extracted from numerous fungal species and used as effectual carriers for bioactive compounds. The fungal chitosan (FC) was innovatively acquired from Fusarium oxysporum grown mycelia, characterized and used for NP synthesis and loading with bee venom (BV). The nano-FC (NFC) had 192.4 nm mean NP diameter, 38.22% loading capacity, and 92.42% entrapment efficiency. BV release from NFC was pH and time dependent; burst BV release was detected at the first 6 h, followed by gradual releases up to 30 h. The in vitro anticancer potentiality valuation, of NFC, BV, and NFC/BV nanoconjugates against HeLa cervix carcinoma, revealed that they all had potent dose-dependent anticancer activity; BV/NFC nanoconjugates were the most effective with IC50=200 μg/mL. The fluorescent staining of treated HeLa cells with BV/NFC nanoconjugates, with DAPI and acridine orange/propidium iodide combination, indicated the appearance of early apoptosis, secondary apoptosis, and secondary necrosis markers and their increment with exposure prolongation. The production of NFC from F. oxysporum and their loading with BV are strongly counseled for production of potent natural antitumor agent with augmented activity against cervix carcinoma.