Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
104 result(s) for "Taylor, Cormac T."
Sort by:
The effect of HIF on metabolism and immunity
Cellular hypoxia occurs when the demand for sufficient molecular oxygen needed to produce the levels of ATP required to perform physiological functions exceeds the vascular supply, thereby leading to a state of oxygen depletion with the associated risk of bioenergetic crisis. To protect against the threat of hypoxia, eukaryotic cells have evolved the capacity to elicit oxygen-sensitive adaptive transcriptional responses driven primarily (although not exclusively) by the hypoxia-inducible factor (HIF) pathway. In addition to the canonical regulation of HIF by oxygen-dependent hydroxylases, multiple other input signals, including gasotransmitters, non-coding RNAs, histone modifiers and post-translational modifications, modulate the nature of the HIF response in discreet cell types and contexts. Activation of HIF induces various effector pathways that mitigate the effects of hypoxia, including metabolic reprogramming and the production of erythropoietin. Drugs that target the HIF pathway to induce erythropoietin production are now approved for the treatment of chronic kidney disease-related anaemia. However, HIF-dependent changes in cell metabolism also have profound implications for functional responses in innate and adaptive immune cells, and thereby heavily influence immunity and the inflammatory response. Preclinical studies indicate a potential use of HIF therapeutics to treat inflammatory diseases, such as inflammatory bowel disease. Understanding the links between HIF, cellular metabolism and immunity is key to unlocking the full therapeutic potential of drugs that target the HIF pathway.Hypoxia-dependent changes in cellular metabolism have important implications for the effective functioning of multiple immune cell subtypes. This Review describes the inputs that shape the hypoxic response in individual cell types and contexts, and the implications of this response for cellular metabolism and associated alterations in immune cell function.
Regulation of immunity and inflammation by hypoxia in immunological niches
Key Points Hypoxia and inflammation are frequently co-incidental microenvironmental features of sites of concentrated physiological or pathological immune activity. Hypoxia activates hypoxia-inducible factor, which is a major regulator of multiple aspects of immune cell function. Consequently, hypoxia plays a key role in the regulation of immunity and inflammation. The impact of hypoxia on immunity and inflammation is site-specific and cell type-specific. Pharmacological hydroxylase inhibition, which activates hypoxia-sensitive pathways, is profoundly protective in multiple models of inflammation. Hypoxia is a microenvironmental feature that is associated with physiological and pathological immunological niches. In this Review, Taylor and Colgan summarize the effects of physiological and pathological hypoxia on immune cells and processes and discuss the possibility of therapeutically targeting hypoxia-sensitive pathways. Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.
Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines
Hypoxia and inflammation are frequently co-incidental features of the tissue microenvironment in a wide range of inflammatory diseases. While the impact of hypoxia on inflammatory pathways in immune cells has been well characterized, less is known about how inflammatory stimuli such as cytokines impact upon the canonical hypoxia-inducible factor (HIF) pathway, the master regulator of the cellular response to hypoxia. In this review, we discuss what is known about the impact of two major pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), on the regulation of HIF-dependent signaling at sites of inflammation. We report extensive evidence for these cytokines directly impacting upon HIF signaling through the regulation of HIF at transcriptional and post-translational levels. We conclude that multi-level crosstalk between inflammatory and hypoxic signaling pathways plays an important role in shaping the nature and degree of inflammation occurring at hypoxic sites.
Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous?
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Hypoxia Modulates Infection of Epithelial Cells by Pseudomonas aeruginosa
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen commonly associated with lung and wound infections. Hypoxia is a frequent feature of the microenvironment of infected tissues which induces the expression of genes associated with innate immunity and inflammation in host cells primarily through the activation of the hypoxia-inducible factor (HIF) and Nuclear factor kappaB (NF-κB) pathways which are regulated by oxygen-dependent prolyl-hydroxylases. Hypoxia also affects virulence and antibiotic resistance in bacterial pathogens. However, less is known about the impact of hypoxia on host-pathogen interactions such as bacterial adhesion and infection. In the current study, we demonstrate that hypoxia decreases the internalization of P. aeruginosa into cultured epithelial cells resulting in decreased host cell death. This response can also be elicited by the hydroxylase inhibitor Dimethyloxallyl Glycine (DMOG). Reducing HIF-2α expression or Rho kinase activity diminished the effects of hypoxia on P. aeruginosa infection. Furthermore, in an in vivo pneumonia infection model, application of DMOG 48 h before infection with P. aeruginosa significantly reduced mortality. Thus, hypoxia reduces P. aeruginosa internalization into epithelial cells and pharmacologic manipulation of the host pathways involved may represent new therapeutic targets in the treatment of P. aeruginosa infection.
Regulation of IL-1β–induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways
Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor κB (NF-κB), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1β, a major proinflammatory cytokine that regulates NF-κB, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1β–induced NF-κB at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1β–signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1β signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1β–dependent inflammatory signaling.
Giardia duodenalis stabilizes HIF-1α and induces glycolytic alterations in intestinal epithelial cells
The gastrointestinal epithelium relies on activation of the hypoxia-inducible factor (HIF) to promote cell survival and maintain bioenergetic homeostasis during hypoxia. While many pathogens can activate HIF, the effects of enteric protozoa on HIF activation in gastrointestinal epithelial cells remain unclear. Giardia duodenalis , a prevalent protozoan enteropathogen, causes intestinal barrier dysfunction characterized by epithelial malabsorption, mucus depletion, altered mucin glycosylation, and microbiota dysbiosis. Findings from the present study reveal an epithelial hypoxic signature upon Giardia infection. Human intestinal epithelial cells were exposed to vehicle or Giardia duodenalis isolate GS/M under normoxic (21% O 2 ) or hypoxic (1% O 2 ) conditions. In normoxia, infected cells displayed a time-dependent increase in HIF-1α protein expression, the oxygen-dependent subunit of HIF-1. In normoxia, Giardia infection upregulated HIF-1 target genes involved in cellular stress (i.e., VEGFA , ANKRD37 , GADD45A ) and glycolysis (i.e., HK2 , LDHA ). This was accompanied by changes in the abundance of glycolytic intermediates (i.e., glucose-6-phosphate, pyruvate, lactate). Although infection in hypoxia failed to augment the hypoxia-induced HIF-1α stabilization, HIF-1 target genes were still upregulated, albeit to a lesser degree. These findings indicate that Giardia induces a transient epithelial hypoxic response in normoxic conditions, revealing a hitherto unrecognized epithelial rescue response to this intestinal parasite.
Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity
Hypoxia is a feature of the microenvironment of a growing tumor. The transcription factor NFκB is activated in hypoxia, an event that has significant implications for tumor progression. Here, we demonstrate that hypoxia activates NFκB through a pathway involving activation of IκB kinase-β (IKKβ) leading to phosphorylation-dependent degradation of IκBα and liberation of NFκB. Furthermore, through increasing the pool and/or activation potential of IKKβ, hypoxia amplifies cellular sensitivity to stimulation with TNFα. Within its activation loop, IKKβ contains an evolutionarily conserved LxxLAP consensus motif for hydroxylation by prolyl hydroxylases (PHDs). Mimicking hypoxia by treatment of cells with siRNA against PHD-1 or PHD-2 or the pan-prolyl hydroxylase inhibitor DMOG results in NFκB activation. Conversely, overexpression of PHD-1 decreases cytokine-stimulated NFκB reporter activity, further suggesting a repressive role for PHD-1 in controlling the activity of NFκB. Hypoxia increases both the expression and activity of IKKβ, and site-directed mutagenesis of the proline residue (P191A) of the putative IKKβ hydroxylation site results in a loss of hypoxic inducibility. Thus, we hypothesize that hypoxia releases repression of NFκB activity through decreased PHD-dependent hydroxylation of IKKβ, an event that may contribute to tumor development and progression through amplification of tumorigenic signaling pathways. IKK
FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.
REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia
The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response.