Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
283 result(s) for "Taylor, Hugh R"
Sort by:
Number of People Blind or Visually Impaired by Glaucoma Worldwide and in World Regions 1990 – 2010: A Meta-Analysis
To assess the number of individuals visually impaired or blind due to glaucoma and to examine regional differences and temporal changes in this parameter for the period from 1990 to 2012. As part of the Global Burden of Diseases (GBD) Study 2010, we performed a systematic literature review for the period from 1980 to 2012. We primarily identified 14,908 relevant manuscripts, out of which 243 high-quality, population-based studies remained after review by an expert panel that involved application of selection criteria that dwelt on population representativeness and clarity of visual acuity methods used. Sixty-six specified the proportion attributable to glaucoma. The software tool DisMod-MR (Disease Modeling-Metaregression) of the GBD was used to calculate fraction of vision impairment due to glaucoma. In 2010, 2.1 million (95% Uncertainty Interval (UI):1.9,2.6) people were blind, and 4.2 (95% UI:3.7,5.8) million were visually impaired due to glaucoma. Glaucoma caused worldwide 6.6% (95% UI:5.9,7.9) of all blindness in 2010 and 2.2% (95% UI:2.0,2.8) of all moderate and severe visual impairment (MSVI). These figures were lower in regions with younger populations (<5% in South Asia) than in high-income regions with relatively old populations (>10%). From 1990 to 2010, the number of blind or visually impaired due to glaucoma increased by 0.8 million (95%UI:0.7, 1.1) or 62% and by 2.3 million (95%UI:2.1,3.5) or 83%, respectively. Percentage of global blindness caused by glaucoma increased between 1990 and 2010 from 4.4% (4.0,5.1) to 6.6%. Age-standardized prevalence of glaucoma related blindness and MSVI did not differ markedly between world regions nor between women. By 2010, one out of 15 blind people was blind due to glaucoma, and one of 45 visually impaired people was visually impaired, highlighting the increasing global burden of glaucoma.
Trachoma
Trachoma is the most common infectious cause of blindness. Repeated episodes of infection with Chlamydia trachomatis in childhood lead to severe conjunctival inflammation, scarring, and potentially blinding inturned eyelashes (trichiasis or entropion) in later life. Trachoma occurs in resource-poor areas with inadequate hygiene, where children with unclean faces share infected ocular secretions. Much has been learnt about the epidemiology and pathophysiology of trachoma. Integrated control programmes are implementing the SAFE Strategy: surgery for trichiasis, mass distribution of antibiotics, promotion of facial cleanliness, and environmental improvement. This strategy has successfully eliminated trachoma in several countries and global efforts are underway to eliminate blinding trachoma worldwide by 2020.
Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections
BackgroundWithin a surveillance of the prevalence and causes of vision impairment in high-income regions and Central/Eastern Europe, we update figures through 2015 and forecast expected values in 2020.MethodsBased on a systematic review of medical literature, prevalence of blindness, moderate and severe vision impairment (MSVI), mild vision impairment and presbyopia was estimated for 1990, 2010, 2015, and 2020.ResultsAge-standardised prevalence of blindness and MSVI for all ages decreased from 1990 to 2015 from 0.26% (0.10–0.46) to 0.15% (0.06–0.26) and from 1.74% (0.76–2.94) to 1.27% (0.55–2.17), respectively. In 2015, the number of individuals affected by blindness, MSVI and mild vision impairment ranged from 70 000, 630 000 and 610 000, respectively, in Australasia to 980 000, 7.46 million and 7.25 million, respectively, in North America and 1.16 million, 9.61 million and 9.47 million, respectively, in Western Europe. In 2015, cataract was the most common cause for blindness, followed by age-related macular degeneration (AMD), glaucoma, uncorrected refractive error, diabetic retinopathy and cornea-related disorders, with declining burden from cataract and AMD over time. Uncorrected refractive error was the leading cause of MSVI.ConclusionsWhile continuing to advance control of cataract and AMD as the leading causes of blindness remains a high priority, overcoming barriers to uptake of refractive error services would address approximately half of the MSVI burden. New data on burden of presbyopia identify this entity as an important public health problem in this population. Additional research on better treatments, better implementation with existing tools and ongoing surveillance of the problem is needed.
Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010
Background To assess prevalence and causes of blindness and vision impairment in high-income regions and in Central/Eastern Europe in 1990 and 2010. Methods Based on a systematic review of medical literature, prevalence of moderate and severe vision impairment (MSVI; presenting visual acuity <6/18 but ≥3/60 in the better eye) and blindness (presenting visual acuity <3/60) was estimated for 1990 and 2010. Results Age-standardised prevalence of blindness and MSVI decreased from 0.2% to 0.1% (3.314 million to 2.736 million people) and from 1.6% to 1.0% (25.362 million to 22.176 million), respectively. Women were generally more affected than men. Cataract was the most frequent cause of blindness in all subregions in 1990, but macular degeneration and uncorrected refractive error became the most frequent causes of blindness in 2010 in all high-income countries, except for Eastern/Central Europe, where cataract remained the leading cause. Glaucoma and diabetic retinopathy were fourth and fifth most common causes for blindness for all regions at both times. Uncorrected refractive error, followed by cataract, macular degeneration, glaucoma and diabetic retinopathy, was the most common cause for MSVI in 1990 and 2010. Conclusions In highly developed countries, prevalence of blindness and MSVI has been reduced by 50% and 38%, respectively, and the number of blind people and people with MSVI decreased by 17.4% and 12.6%, respectively, even with the increasing number of older people in the population. In high-income countries, macular degeneration has become the most important cause of blindness, but uncorrected refractive errors continue to be the leading cause of MSVI.
Prevalence and causes of vision loss in East Asia in 2015: magnitude, temporal trends and projections
BackgroundTo determine the prevalence and causes of blindness and vision impairment (VI) in East Asia in 2015 and to forecast the trend to 2020.MethodsThrough a systematic literature review and meta-analysis, we estimated prevalence of blindness (presenting visual acuity <3/60 in the better eye), moderate-to-severe vision impairment (MSVI; 3/60≤presenting visual acuity <6/18), mild vision impairment (mild VI: 6/18≤presenting visual acuity <6/12) and uncorrected presbyopia for 1990, 2010, 2015 and 2020. A total of 44 population-based studies were included.ResultsIn 2015, age-standardised prevalence of blindness, MSVI, mild VI and uncorrected presbyopia was 0.37% (80% uncertainty interval (UI) 0.12%–0.68%), 3.06% (80% UI 1.35%–5.16%) and 2.65% (80% UI 0.92%–4.91%), 32.91% (80% UI 18.72%–48.47%), respectively, in East Asia. Cataract was the leading cause of blindness (43.6%), followed by uncorrected refractive error (12.9%), glaucoma, age-related macular degeneration, corneal diseases, trachoma and diabetic retinopathy (DR). The leading cause for MSVI was uncorrected refractive error, followed by cataract, age-related macular degeneration, glaucoma, corneal disease, trachoma and DR. The burden of VI due to uncorrected refractive error, cataracts, glaucoma and DR has continued to rise over the decades reported.ConclusionsAddressing the public healthcare barriers for cataract and uncorrected refractive error can help eliminate almost 57% of all blindness cases in this region. Therefore, public healthcare efforts should be focused on effective screening and effective patient education, with access to high-quality healthcare.
Trachoma
Trachoma is a keratoconjunctivitis caused by ocular infection with Chlamydia trachomatis. Repeated or persistent episodes lead to increasingly severe inflammation that can progress to scarring of the upper tarsal conjunctiva. Trichiasis develops when scarring distorts the upper eyelid sufficiently to cause one or more lashes to abrade the cornea, scarring it in turn and causing blindness. Active trachoma affects an estimated 84 million people; another 7·6 million have end-stage disease, of which about 1·3 million are blind. Trachoma should stand on the brink of extinction thanks to a 1998 initiative launched by WHO—the Global Elimination of Trachoma by 2020. This programme advocates control of trachoma at the community level with four inter-related population-health initiatives that form the SAFE strategy: surgery for trichiasis, antibiotics for active trachoma, facial cleanliness, and environmental improvement. Evidence supports the effectiveness of this approach, and if current world efforts continue, blinding trachoma will indeed be eliminated by 2020.
Treatment coverage rates for refractive error in the National Eye Health survey
To present treatment coverage rates and risk factors associated with uncorrected refractive error in Australia. Thirty population clusters were randomly selected from all geographic remoteness strata in Australia to provide samples of 1738 Indigenous Australians aged 40 years and older and 3098 non-Indigenous Australians aged 50 years and older. Presenting visual acuity was measured and those with vision loss (worse than 6/12) underwent pinhole testing and hand-held auto-refraction. Participants whose corrected visual acuity improved to be 6/12 or better were assigned as having uncorrected refractive error as the main cause of vision loss. The treatment coverage rates of refractive error were calculated (proportion of participants with refractive error that had distance correction and presenting visual acuity better than 6/12), and risk factor analysis for refractive correction was performed. The refractive error treatment coverage rate in Indigenous Australians of 82.2% (95% CI 78.6-85.3) was significantly lower than in non-Indigenous Australians (93.5%, 92.0-94.8) (Odds ratio [OR] 0.51, 0.35-0.75). In Indigenous participants, remoteness (OR 0.41, 0.19-0.89 and OR 0.55, 0.35-0.85 in Outer Regional and Very Remote areas, respectively), having never undergone an eye examination (OR 0.08, 0.02-0.43) and having consulted a health worker other than an optometrist or ophthalmologist (OR 0.30, 0.11-0.84) were risk factors for low coverage. On the other hand, speaking English was a protective factor (OR 2.72, 1.13-6.45) for treatment of refractive error. Compared to non-Indigenous Australians who had an eye examination within one year, participants who had not undergone an eye examination within the past five years (OR 0.08, 0.03-0.21) or had never been examined (OR 0.05, 0.10-0.23) had lower coverage. Interventions that increase integrated optometry services in regional and remote Indigenous communities may improve the treatment coverage rate of refractive error. Increasing refractive error treatment coverage rates in both Indigenous and non-Indigenous Australians through at least five-yearly eye examinations and the provision of affordable spectacles will significantly reduce the national burden of vision loss in Australia.
The validity of self-report of eye diseases in participants with vision loss in the National Eye Health Survey
We assessed the validity and reliability of self-report of eye disease in participants with unilateral vision loss (presenting visual acuity worse than 6/12 in the worse eye and equal to or better than 6/12 in the better eye) or bilateral vision loss (presenting visual acuity worse than 6/12 in the better eye) in Australia’s National Eye Health Survey. In total, 1738 Indigenous Australians and 3098 non-Indigenous Australians were sampled from 30 sites. Participants underwent a questionnaire and self-reported their eye disease histories. A clinical examination identified whether participants had cataract, age-related macular degeneration, diabetic retinopathy and glaucoma. For those identified as having unilateral or bilateral vision loss (438 Indigenous Australians and 709 non-Indigenous Australians), self-reports were compared with examination results using validity and reliability measures. Reliability was poor for all four diseases (Kappa 0.06 to 0.37). Measures of validity of self-report were variable, with generally high specificities (93.7% to 99.2%) in all diseases except for cataract (63.9 to 73.1%) and low sensitivities for all diseases (7.6% in Indigenous Australians with diabetic retinopathy to 44.1% of non-Indigenous Australians with cataract). This study suggests that self-report is an unreliable population-based research tool for identifying eye disease in those with vision loss.
Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs?
Background/aimsTo estimate 2015 global ophthalmologist data and analyse their relationship to income groups, prevalence rates of blindness and visual impairment and gross domestic product (GDP) per capita.MethodsOnline surveys were emailed to presidents/chairpersons of national societies of ophthalmology and Ministry of Health representatives from all 194 countries to capture the number and density (per million population) of ophthalmologists, the number/density performing cataract surgery and refraction, and annual ophthalmologist population growth trends. Correlations between these data and income group, GDP per capita and prevalence rates of blindness and visual impairment were analysed.ResultsIn 2015, there were an estimated 232 866 ophthalmologists in 194 countries. Income was positively associated with ophthalmologist density (a mean 3.7 per million population in low-income countries vs a mean 76.2 in high-income countries). Most countries reported positive growth (94/156; 60.3%). There was a weak, inverse correlation between the prevalence of blindness and the ophthalmologist density. There were weak, positive correlations between the density of ophthalmologists performing cataract surgery and GDP per capita and the prevalence of blindness, as well as between GDP per capita and the density of ophthalmologists doing refractions.ConclusionsAlthough the estimated global ophthalmologist workforce appears to be growing, the appropriate distribution of the eye care workforce and the development of comprehensive eye care delivery systems are needed to ensure that eye care needs are universally met.
The Prevalence of Self-Reported Diabetes in the Australian National Eye Health Survey
To present the prevalence of self-reported diabetes in Indigenous and non-Indigenous participants in the National Eye Health Survey. 3098 non-Indigenous Australians aged 50-98 years and 1738 Indigenous Australians aged 40-92 years were examined in 30 randomly selected sites, stratified by remoteness. A history of diabetes was obtained using an interviewer-administered questionnaire. 13.91% (431/3098) of non-Indigenous Australians and 37.11% (645/1738) of Indigenous Australians had self-reported diabetes. The age-adjusted prevalence of self-reported diabetes for non-Indigenous and Indigenous Australians was 11.49% and 43.77%, respectively (p <0.001). The prevalence of self-reported diabetes increased markedly with age (OR = 1.04 per year, p = 0.017). Indigenous Australians living in very remote areas were more likely to have self-reported diabetes than those in major city areas (OR = 1.61, p = 0.038). The prevalence of self-reported diabetes in Australia was high, with the prevalence being almost 4 times higher in Indigenous Australians compared with non-Indigenous Australians. With the prevalence of diabetes likely to increase, the results of this national survey may inform future policy, planning and funding allocation to assist in controlling the diabetes epidemic.