Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47 result(s) for "Teague, Jon W."
Sort by:
Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone
Adrienne Flanagan and colleagues identify distinct driver mutations in H3F3A and H3F3B in chondroblastoma and giant cell tumor of bone. The mutations occur in over 90% of tumors and exhibit a high degree of tumor type specificity. It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B , which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A , leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions.
Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups
In multiple myeloma, next-generation sequencing (NGS) has expanded our knowledge of genomic lesions, and highlighted a dynamic and heterogeneous composition of the tumor. Here we used NGS to characterize the genomic landscape of 418 multiple myeloma cases at diagnosis and correlate this with prognosis and classification. Translocations and copy number abnormalities (CNAs) had a preponderant contribution over gene mutations in defining the genotype and prognosis of each case. Known and novel independent prognostic markers were identified in our cohort of proteasome inhibitor and immunomodulatory drug-treated patients with long follow-up, including events with context-specific prognostic value, such as deletions of the PRDM1 gene. Taking advantage of the comprehensive genomic annotation of each case, we used innovative statistical approaches to identify potential novel myeloma subgroups. We observed clusters of patients stratified based on the overall number of mutations and number/type of CNAs, with distinct effects on survival, suggesting that extended genotype of multiple myeloma at diagnosis may lead to improved disease classification and prognostication.
Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing
Human cancers often carry many somatically acquired genomic rearrangements, some of which may be implicated in cancer development. However, conventional strategies for characterizing rearrangements are laborious and low-throughput and have low sensitivity or poor resolution. We used massively parallel sequencing to generate sequence reads from both ends of short DNA fragments derived from the genomes of two individuals with lung cancer. By investigating read pairs that did not align correctly with respect to each other on the reference human genome, we characterized 306 germline structural variants and 103 somatic rearrangements to the base-pair level of resolution. The patterns of germline and somatic rearrangement were markedly different. Many somatic rearrangements were from amplicons, although rearrangements outside these regions, notably including tandem duplications, were also observed. Some somatic rearrangements led to abnormal transcripts, including two from internal tandem duplications and two fusion transcripts created by interchromosomal rearrangements. Germline variants were predominantly mediated by retrotransposition, often involving AluY and LINE elements. The results demonstrate the feasibility of systematic, genome-wide characterization of rearrangements in complex human cancer genomes, raising the prospect of a new harvest of genes associated with cancer using this strategy.
Classification and Personalized Prognosis in Myeloproliferative Neoplasms
Genetic analysis involving 2035 patients with a myeloproliferative disorder identified eight genomic subgroups with distinct clinical phenotypes, risk of leukemic transformation, and event-free survival.
Genomic Classification and Prognosis in Acute Myeloid Leukemia
The authors identify 11 discrete genetic subsets of acute myeloid leukemia on the basis of the expression and coexpression of particular mutations. Prospective studies may elucidate distinct approaches to their management. Acute myeloid leukemia (AML) is characterized by clonal expansion of undifferentiated myeloid precursors, resulting in impaired hematopoiesis and bone marrow failure. Although many patients with AML have a response to induction chemotherapy, refractory disease is common, and relapse represents the major cause of treatment failure. 1 Cancer develops from somatically acquired driver mutations, which account for the myriad biologic and clinical complexities of the disease. A classification of cancers that is based on causality is likely to be durable, reproducible, and clinically relevant. This is already evident in the case of AML, for which there has been a progressive shift from . . .
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma
Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140 , LTB, ROBO1 and clustered missense mutations in EGR1 . The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment. Multiple myeloma is a malignant plasma cell disorder with a complex molecular pathogenesis. Here, the authors perform whole-exome sequencing, copy-number profiling and cytogenetic analysis in 84 myeloma samples and highlight the diversity and evolution of the mutational profile underlying the disease.
Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence
Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development. The incidence of esophageal squamous cell carcinoma varies significantly across different geographical regions. Mutational signature analysis of tumors sampled from high- and low-incidence areas suggests that these variations may not be explained by mutagenic exposures.
A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing
As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. Cancer genetics has benefited from the advent of next generation sequencing, yet a comparison of sequencing and analysis techniques is lacking. Here, the authors sequence a normal-tumour pair and perform data analysis at multiple institutes and highlight some of the pitfalls associated with the different methods.
RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia
Peter Campbell, Mel Greaves and colleagues use exome and whole-genome sequencing to characterize somatic mutations in childhood acute lymphoblastic leukemias with the ETV6 - RUNX1 fusion gene. They find that RAG-mediated deletions are the dominant mutational process. The ETV6 - RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL) cases, is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near breakpoints, incorporation of non-templated sequence at junctions, ∼30-fold enrichment at promoters and enhancers of genes actively transcribed in B cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single-cell tracking shows that this mechanism is active throughout leukemic evolution, with evidence of localized clustering and reiterated deletions. Integration of data on point mutations and rearrangements identifies ATF7IP and MGA as two new tumor-suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6 - RUNX1 –positive lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B cell differentiation.
Geographic variation of mutagenic exposures in kidney cancer genomes
International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden 1 . In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence 2 . Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics. Whole-genome sequencing of 962 clear cell renal cell carcinomas from 11 countries shows geographic variations in somatic mutation profiles, including a mutational signature of unknown cause in 70% of cases from Japan.