Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
550 result(s) for "Tedesco, M"
Sort by:
Remote sensing of the cryosphere
The cryosphere, that region of the world where water is temporarily or permanently frozen, plays a crucial role on our planet. Recent developments in remote sensing techniques, and the acquisition of new data sets, have resulted in significant advances in our understanding of all components of the cryosphere and its processes. This book, based on contributions from 40 leading experts, offers a comprehensive and authoritative overview of the methods, techniques and recent advances in applications of remote sensing of the cryosphere. Examples of the topics covered include: • snow extent, depth, grain-size and impurities • surface and subsurface melting • glaciers • accumulation over the Greenland and Antarctica ice sheets • ice thickness and velocities • gravimetric measurements from space • sea, lake and river ice • frozen ground and permafrost • fieldwork activities • recent and future cryosphere-oriented missions and experiments All figures are in color and provide an excellent visual accompaniment to the technical and scientific aspect of the book. Readership: Senior undergraduates, Masters and PhD Students, PostDocs and Researchers in cryosphere science and remote sensing. Remote Sensing of the Cryosphere is the significant first volume in the new Cryosphere Science Series. This new series comprises volumes that are at the cutting edge of new research, or provide focussed interdisciplinary reviews of key aspects of the science.
The extreme melt across the Greenland ice sheet in 2012
The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors – including the Oceansat‐2 scatterometer, the Moderate‐resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder – are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research. Key Points Satellites reveal the 2012 extreme melt across most of the Greenland ice sheet In‐situ temperature data and field observations confirm the melt event Extreme melt is rare: last one in 1889, and next previous ~7 centuries earlier
Global potential for natural regeneration in deforested tropical regions
Extensive forest restoration is a key strategy to meet nature-based sustainable development goals and provide multiple social and environmental benefits 1 . Yet achieving forest restoration at scale requires cost-effective methods 2 . Tree planting in degraded landscapes is a popular but costly forest restoration method that often results in less biodiverse forests when compared to natural regeneration techniques under similar conditions 3 . Here we assess the current spatial distribution of pantropical natural forest (from 2000 to 2016) and use this to present a model of the potential for natural regeneration across tropical forested countries and biomes at a spatial resolution of 30 m. We estimate that an area of 215 million hectares—an area greater than the entire country of Mexico—has potential for natural forest regeneration, representing an above-ground carbon sequestration potential of 23.4 Gt C (range, 21.1–25.7 Gt) over 30 years. Five countries (Brazil, Indonesia, China, Mexico and Colombia) account for 52% of this estimated potential, showcasing the need for targeting restoration initiatives that leverage natural regeneration potential. Our results facilitate broader equitable decision-making processes that capitalize on the widespread opportunity for natural regeneration to help achieve national and global environmental agendas. An estimated area of 215 million hectares has the potential for natural forest regeneration across tropical forested countries and biomes, representing an above-ground carbon sequestration potential of 23.4 Gt C.
Surface Melting Over the Greenland Ice Sheet Derived From Enhanced Resolution Passive Microwave Brightness Temperatures (1979–2019)
Surface melting is a major component of the Greenland ice sheet surface mass balance, and it affects sea level rise through direct runoff and the modulation of ice dynamics and hydrological processes, supraglacially, englacially and subglacially. Passive microwave (PMW) brightness temperature observations are of paramount importance in studying the spatial and temporal evolution of surface melting due to their long temporal coverage (1979–present) and high temporal resolution (daily). However, a major limitation of PMW datasets has been the relatively coarse spatial resolution, which has historically been of the order of tens of kilometers. Here, we use a newly released PMW dataset (37 GHz, horizontal polarization) made available through a NASA “Making Earth System Data Records for Use in Research Environments” (MeASUREs) program to study the spatiotemporal evolution of surface melting over the Greenland ice sheet at an enhanced spatial resolution of 3.125 km. We assess the outputs of different detection algorithms using data collected by automatic weather stations (AWSs) and the outputs of the Modèle Atmosphérique Régional (MAR) regional climate model. We found that sporadic melting is well captured using a dynamic algorithm based on the outputs of the Microwave Emission Model of Layered Snowpack (MEMLS), whereas a fixed threshold of 245 K is capable of detecting persistent melt. Our results indicate that, during the reference period from 1979 to 2019 (from 1988 to 2019), surface melting over the ice sheet increased in terms of both duration, up to 4.5 (2.9) d per decade, and extension, up to 6.9 % (3.6 %) of the entire ice sheet surface extent per decade, according to the MEMLS algorithm. Furthermore, the melting season started up to 4.0 (2.5) d earlier and ended 7.0 (3.9) d later per decade. We also explored the information content of the enhanced-resolution dataset with respect to the one at 25 km and MAR outputs using a semi-variogram approach. We found that the enhanced product is more sensitive to local-scale processes, thereby confirming the potential of this new enhanced product for monitoring surface melting over Greenland at a higher spatial resolution than the historical products and for monitoring its impact on sea level rise. This offers the opportunity to improve our understanding of the processes driving melting, to validate modeled melt extent at high resolution and, potentially, to assimilate these data in climate models.
Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR
To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 2 cm and +9 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.
Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers
Greenland ice sheet mass loss has accelerated in the past decade responding to combined glacier discharge and surface melt water runoff increases. During summer, absorbed solar energy, modulated at the surface primarily by albedo, is the dominant factor governing surface melt variability in the ablation area. Using satellite-derived surface albedo with calibrated regional climate modeled surface air temperature and surface downward solar irradiance, we determine the spatial dependence and quantitative impact of the ice sheet albedo feedback over 12 summer periods beginning in 2000. We find that, while albedo feedback defined by the change in net solar shortwave flux and temperature over time is positive over 97% of the ice sheet, when defined using paired annual anomalies, a second-order negative feedback is evident over 63% of the accumulation area. This negative feedback damps the accumulation area response to warming due to a positive correlation between snowfall and surface air temperature anomalies. Positive anomaly-gauged feedback concentrated in the ablation area accounts for more than half of the overall increase in melting when satellite-derived melt duration is used to define the timing when net shortwave flux is sunk into melting. Abnormally strong anticyclonic circulation, associated with a persistent summer North Atlantic Oscillation extreme since 2007, enabled three amplifying mechanisms to maximize the albedo feedback: (1) increased warm (south) air advection along the western ice sheet increased surface sensible heating that in turn enhanced snow grain metamorphic rates, further reducing albedo; (2) increased surface downward shortwave flux, leading to more surface heating and further albedo reduction; and (3) reduced snowfall rates sustained low albedo, maximizing surface solar heating, progressively lowering albedo over multiple years. The summer net infrared and solar radiation for the high elevation accumulation area approached positive values during this period. Thus, it is reasonable to expect 100% melt area over the ice sheet within another similar decade of warming.
Arctic cut-off high drives the poleward shift of a new Greenland melting record
Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700±50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948–2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade. Atmospheric circulation controls the mass and energy balance of the Greenland ice sheet, yet the exact dynamics remain unknown. Here, the authors show that record conditions over Greenland during the summer of 2015 were associated with the formation and persistency of an Arctic cut-off high.
Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data
A combined analysis of remote sensing observations, regional climate model (RCM) outputs and reanalysis data over the Greenland ice sheet provides evidence that multiple records were set during summer 2012. Melt extent was the largest in the satellite era (extending up to ∼97% of the ice sheet) and melting lasted up to ∼2 months longer than the 1979–2011 mean. Model results indicate that near surface temperature was ∼3 standard deviations (σ) above the 1958–2011 mean, while surface mass balance (SMB) was ∼3σ below the mean and runoff was 3.9σ above the mean over the same period. Albedo, exposure of bare ice and surface mass balance also set new records, as did the total mass balance with summer and annual mass changes of, respectively, −627 Gt and −574 Gt, 2σ below the 2003–2012 mean. We identify persistent anticyclonic conditions over Greenland associated with anomalies in the North Atlantic Oscillation (NAO), changes in surface conditions (e.g., albedo, surface temperature) and preconditioning of surface properties from recent extreme melting as major driving mechanisms for the 2012 records. Less positive if not increasingly negative SMB will likely occur should these characteristics persist.
The Darkening of the Greenland Ice Sheet: Trends, Drivers and Projections (1981-2100)
The surface energy balance and meltwater production of the Greenland ice sheet (GrIS) are modulated by snow and ice albedo through the amount of absorbed solar radiation. Here we show, using space-borne multispectral data collected during the 3 decades from 1981 to 2012, that summertime surface albedo over the GrIS decreased at a statistically significant (99 %) rate of 0.02 decade(sup -1) between 1996 and 2012. Over the same period, albedo modelled by the Modele Atmospherique Regionale (MAR) also shows a decrease, though at a lower rate (approximately -0.01 decade(sup -1)) than that obtained from space-borne data. We suggest that the discrepancy between modelled and measured albedo trends can be explained by the absence in the model of processes associated with the presence of light-absorbing impurities. The negative trend in observed albedo is confined to the regions of the GrIS that undergo melting in summer, with the dry snow zone showing no trend. The period 1981-1996 also showed no statistically significant trend over the whole GrIS. Analysis of MAR outputs indicates that the observed albedo decrease is attributable to the combined effects of increased near-surface air temperatures, which enhanced melt and promoted growth in snow grain size and the expansion of bare ice areas, and to trends in light-absorbing impurities (LAI) on the snow and ice surfaces. Neither aerosol models nor in situ and remote sensing observations indicate increasing trends in LAI in the atmosphere over Greenland. Similarly, an analysis of the number of fires and BC emissions from fires points to the absence of trends for such quantities. This suggests that the apparent increase of LAI in snow and ice might be related to the exposure of a \"dark band\" of dirty ice and to increased consolidation of LAI at the surface with melt, not to increased aerosol deposition. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening, with albedo anomalies averaged over the whole ice sheet lower by 0.08 in 2100 than in 2000, driven solely by a warming climate. Future darkening is likely underestimated because of known underestimates in modelled melting (as seen in hindcasts) and because the model albedo scheme does not currently include the effects of LAI, which have a positive feedback on albedo decline through increased melting, grain growth, and darkening.
Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their performance with similar methods. Digital elevation models derived from WorldView stereo imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, combined with a lake edge determination from imagery. The optimal supraglacial lake depth retrieval is a physically based single-band model applied to two OLI bands independently (red and panchromatic) that are then averaged together. When OLI- and WorldView-derived depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbræ) region of Greenland to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. We also give coefficients for estimating supraglacial lake depth using a similar method with other multispectral sensors.