Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Teeling, Jessica L"
Sort by:
Low-grade inflammation, diet composition and health: current research evidence and its translation
by
Minihane, Anne M.
,
Russell, Wendy R.
,
Kremer, Bas H. A.
in
biomarkers
,
Biomarkers - blood
,
Cardiovascular Diseases - complications
2015
The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.
Journal Article
Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia
by
Booth, Steven G
,
Teeling, Jessica L
,
Perry, V Hugh
in
Animals
,
Bacterial infections
,
Biological response modifiers
2012
Background
Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection.
Methods
Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live
Salmonella typhimurium
. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with
Salmonella typhimurium
and subsequently challenged with a focal unilateral intracerebral injection of LPS.
Results
Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in
Salmonella typhimurium
-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice.
Conclusions
These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.
Journal Article
New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease
by
Teeling, Jessica L.
,
Stavenhagen, Jeffrey B.
,
Fuller, James P.
in
Aging
,
Alzheimer Disease
,
Alzheimer Vaccines
2014
There are an estimated 18 million Alzheimer's disease (AD) sufferers worldwide and with no disease modifying treatment currently available, development of new therapies represents an enormous unmet clinical need. AD is characterized by episodic memory loss followed by severe cognitive decline and is associated with many neuropathological changes. AD is characterized by deposits of amyloid beta (Aβ), neurofibrillary tangles, and neuroinflammation. Active immunization or passive immunization against Aβ leads to the clearance of deposits in transgenic mice expressing human Aβ. This clearance is associated with reversal of associated cognitive deficits, but these results have not translated to humans, with both active and passive immunotherapy failing to improve memory loss. One explanation for these observations is that certain anti-Aβ antibodies mediate damage to the cerebral vasculature limiting the top dose and potentially reducing efficacy. Fc gamma receptors (FcγR) are a family of immunoglobulin-like receptors which bind to the Fc portion of IgG, and mediate the response of effector cells to immune complexes. Data from both mouse and human studies suggest that cross-linking FcγR by therapeutic antibodies and the subsequent pro-inflammatory response mediates the vascular side effects seen following immunotherapy. Increasing evidence is emerging that FcγR expression on CNS resident cells, including microglia and neurons, is increased during aging and functionally involved in the pathogenesis of age-related neurodegenerative diseases. Therefore, we propose that increased expression and ligation of FcγR in the CNS, either by endogenous IgG or therapeutic antibodies, has the potential to induce vascular damage and exacerbate neurodegeneration. To produce safe and effective immunotherapies for AD and other neurodegenerative diseases it will be vital to understand the role of FcγR in the healthy and diseased brain. Here we review the literature on FcγR expression, function and proposed roles in multiple age-related neurological diseases. Lessons can be learnt from therapeutic antibodies used for the treatment of cancer where antibodies have been engineered for optimal efficacy.
Journal Article
Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration
by
Booth, Steven G
,
Chouhan, Joe K
,
Teeling, Jessica L
in
Alzheimer's disease
,
Animal cognition
,
Bacteria
2022
Bacterial infections are a common cause of morbidity and mortality in the elderly, and particularly in individuals with a neurodegenerative disease. Experimental models of neurodegeneration have shown that LPS-induced systemic inflammation increases neuronal damage, a process thought to be mediated by activation of ‘primed’ microglia. The effects of a real systemic bacterial infection on the innate immune cells in the brain and neuronal networks are less well described, and therefore, in this study we investigated the alterations in microglia activation and phenotype and synaptic markers in response to a low grade, live bacterial infection. Mice with or without a pre-existing prion-induced neurodegenerative disease were given a single systemic injection of live Salmonella typhimurium at early (8 weeks) or mid-stage (12 weeks) of disease progression. Immune activation markers CD11b and MHCII and pro-inflammatory cytokines were analysed four weeks post-infection. Systemic infection with S. typhimurium resulted in an exaggerated inflammatory response when compared to ME7 prion mice treated with saline. These changes to inflammatory markers were most pronounced at mid-stage disease. Analysis of synaptic markers in ME7 prion mice revealed a significant reduction of genes that are associated with early response in synaptic plasticity, extracellular matrix structure and post-synaptic density, but no further reduction following systemic infection. In contrast, analysis of activity-related neuronal receptors involved in development of learning and memory, such as Grm1 and Grin2a, showed a significant decrease in response to systemic bacterial challenge. These changes were observed early in the disease progression and correlate with reduced burrowing activity. The exaggerated innate immune activation and altered expression of genes linked to synaptic plasticity may contribute to the onset and/or progression of neurodegeneration.
Journal Article
A laser-induced mouse model of progressive retinal degeneration with central sparing displays features of parafoveal geographic atrophy
by
Soundara Pandi, Sudha Priya
,
Lynn, Savannah A.
,
Teeling, Jessica L.
in
692/308/1426
,
692/699/3161/1626
,
Animal models
2023
There are no disease-modifying treatments available for geographic atrophy (GA), the advanced form of dry age-related macular degeneration. Current murine models fail to fully recapitulate the features of GA and thus hinder drug discovery. Here we describe a novel mouse model of retinal degeneration with hallmark features of GA. We used an 810 nm laser to create a retinal lesion with central sparing (RLCS), simulating parafoveal atrophy observed in patients with progressive GA. Laser-induced RLCS resulted in progressive GA-like pathology with the development of a confluent atrophic lesion. We demonstrate significant changes to the retinal structure and thickness in the central unaffected retina over a 24-week post-laser period, confirmed by longitudinal optical coherence tomography scans. We further show characteristic features of progressive GA, including a gradual reduction in the thickness of the central, unaffected retina and of total retinal thickness. Histological changes observed in the RLCS correspond to GA pathology, which includes the collapse of the outer nuclear layer, increased numbers of GFAP + , CD11b + and FcγRI + cells, and damage to cone and rod photoreceptors. We demonstrate a laser-induced mouse model of parafoveal GA progression, starting at 2 weeks post-laser and reaching confluence at 24 weeks post-laser. This 24-week time-frame in which GA pathology develops, provides an extended window of opportunity for proof-of-concept evaluation of drugs targeting GA. This time period is an added advantage compared to several existing models of geographic atrophy.
Journal Article
Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring
by
Fleming, Tom P
,
Teeling, Jessica L
,
Williams, Charlotte L
in
Animals
,
Behavior, Animal
,
Biomedical and Life Sciences
2011
Background
The preimplantation embryo is sensitive to culture conditions
in vitro
and poor maternal diet
in vivo
. Such environmental perturbations can have long-lasting detrimental consequences for offspring health and physiology. However, early embryo susceptibility to other aspects of maternal health and their potential long-term influence into adulthood is relatively unexplored. In this study, we established an
in vivo
mouse model of maternal periconceptional systemic inflammation by intraperitoneal lipopolysaccharide (LPS) administration on the day of zygote formation and investigated the consequences into adulthood.
Results
In the short term, maternal LPS challenge induced a transient and typical maternal sickness response (elevated serum proinflammatory cytokines and hypoactive behaviour). Maternal LPS challenge altered preimplantation embryo morphogenesis and cell lineage allocation, resulting in reduced blastocyst inner cell mass (ICM) cell number and a reduced ICM:trophectoderm cell ratio. In the long term, diverse aspects of offspring physiology were affected by maternal LPS treatment. Whilst birthweight, growth and adult blood pressure were unaltered, reduced activity in an open-field behaviour test, increased fat pad:body weight ratio and increased body mass index were observed in male, but not female, offspring. Most importantly, the maternal LPS challenge caused corticosterone-independent blunting of the serum proinflammatory cytokine response to innate immune challenge in both male and female offspring. The suppressed state of innate immunity in challenged offspring was dose-dependent with respect to the maternal LPS concentration administered.
Conclusions
These results demonstrate for the first time that the preimplantation embryo
in vivo
is sensitive to maternal systemic inflammation, with effects on blastocyst cell lineage allocation and consequences for behaviour, adiposity and innate immune response in adult offspring. Critically, we identify a novel mechanism mediated through maternal-embryonic interactions that confers plasticity in the development of the innate immune system, which is potentially important in setting postnatal tolerance to environmental pathogens. Our study extends the concept of developmental programming of health and disease to include maternal health at the time of conception.
Journal Article
Antibody Engineering for Optimized Immunotherapy in Alzheimer's Disease
by
Edwards, Ross A.
,
Sumner, Isabelle L.
,
Teeling, Jessica L.
in
Aging
,
Alzheimer's disease
,
Alzheimers disease
2018
There are nearly 50 million people with Alzheimer's disease (AD) worldwide and currently no disease modifying treatment is available. AD is characterized by deposits of Amyloid-β (Aβ), neurofibrillary tangles, and neuroinflammation, and several drug discovery programmes studies have focussed on Aβ as therapeutic target. Active immunization and passive immunization against Aβ leads to the clearance of deposits in humans and transgenic mice expressing human Aβ but have failed to improve memory loss. This review will discuss the possible explanations for the lack of efficacy of Aβ immunotherapy, including the role of a pro-inflammatory response and subsequent vascular side effects, the binding site of therapeutic antibodies and the timing of the treatment. We further discuss how antibodies can be engineered for improved efficacy.
Journal Article
Mild Systemic Inflammation Increases Erythrocyte Fragility
2024
There is growing evidence that inflammation impairs erythrocyte structure and function. We assessed the impact of mild systemic inflammation on erythrocyte fragility in three different settings. In order to investigate causation, erythrocyte osmotic fragility was measured in mice challenged with a live attenuated bacterial strain to induce low-grade systemic inflammation; a significant increase in erythrocyte osmotic fragility was observed. To gather evidence that systemic inflammation is associated with erythrocyte fragility in humans, two observational studies were conducted. First, using a retrospective study design, the relationship between reticulocyte-based surrogate markers of haemolysis and high-sensitivity C-reactive protein was investigated in 9292 healthy participants of the UK Biobank project. Secondly, we prospectively assessed the relationship between systemic inflammation (measured by the urinary neopterin/creatinine ratio) and erythrocyte osmotic fragility in a mixed population (n = 54) of healthy volunteers and individuals with long-term medical conditions. Both human studies were in keeping with a relationship between inflammation and erythrocyte fragility. Taken together, we conclude that mild systemic inflammation increases erythrocyte fragility and may contribute to haemolysis. Further research is needed to assess the molecular underpinnings of this pathway and the clinical implications in inflammatory conditions.
Journal Article
Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut
by
Teeling, Jessica L
,
Jean-Cosme, Dodart
,
Liu, Zhi
in
Atrophy
,
Cerebral cortex
,
Dementia disorders
2022
Alpha synuclein has a key role in the pathogenesis of Parkinson’s disease (PD), Dementia with Lewy Bodies (LBD) and Multiple System Atrophy (MSA). Immunotherapies aiming at neutralising toxic αSyn species are being investigated in the clinic as potential disease modifying therapies for PD and other synucleinopathies. In this study, the effects of active immunisation against αSyn with the UB-312 vaccine were investigated in the Thy1SNCA/15 mouse model of PD. Young transgenic and wild-type mice received an immunisation regimen over a period of 6 weeks, then observed for an additional 9 weeks. Behavioural assessment was conducted before immunisation and at 15 weeks after the first dose. UB-312 immunisation prevented the development of motor impairment in the wire test and challenging beam test, which was associated with reduced levels of αSyn oligomers in the cerebral cortex, hippocampus and striatum of Thy1SNCA/15 mice. UB-312 immunotherapy resulted in a significant reduction of theαSyn load in the colon, accompanied by a reduction in enteric glial cell reactivity in the colonic ganglia. Our results demonstrate that immunisation with UB-312 prevents functional deficits and both central and peripheral pathology in Thy1SNCA/15 mice.
Journal Article
Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer’s disease
2019
Despite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes neocortical MAPT (tau) aggregation in familial and idiopathic Alzheimer’s disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. In the present study, we show that tau can accumulate spontaneously in aged transgenic
APP
swe
/
PS1
ΔE9
mice. Tau pathology is abundant around Aβ deposits, and further characterized by accumulation of Gallyas and thioflavin-S-positive inclusions, which were detected in the
APP
swe
/
PS1
ΔE9
brain at 18 months of age. Age-dependent increases in argyrophilia correlated positively with binding levels of the paired helical filament (PHF) tracer [
18
F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Quantitative proteomics identified sequences of hyperphosphorylated and three-repeat tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Tissue from the frontal gyrus of human subjects was used to validate these findings, revealing primarily quantitative differences between the tau pathology observed in AD patient vs. transgenic mouse tissue. As physiological levels of endogenous, ‘wild-type’ tau aggregate secondarily to Aβ in
APP
swe
/
PS1
ΔE9
mice, this study suggests that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.
Journal Article