Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,472
result(s) for
"Teixeira, José"
Sort by:
Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications
by
Teixeira, José Carlos
,
Dragone, Giuliano
,
Teixeira, José António
in
biodiesel
,
Biodiesel fuels
,
Biofuels
2019
A growing world population and a growing number of applications for vegetable oils are generating an increasing demand for these oils, causing serious environmental problems. A sustainable lipid production is then fundamental to address these problems. Oleaginous yeasts are a promising solution for sustainable lipid production, but, with the current knowledge and technology, they are still not a serious alternative in the market. In this review, the potential of these yeasts is highlighted and a discussion is made mainly focused on the economics of the oleaginous yeast oil production and identification of the key points to be improved to achieve lower production costs and higher income. Three main stages of the production process, where costs are higher, were identified. To render economically feasible the production of oils using oleaginous yeasts, a reduction in production costs must occur in all stages, lipid yields and productivities must be improved, and production must be targeted to high-value product applications.
Journal Article
Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin
by
Ballesteros, Lina F
,
Mussatto, Solange I
,
Teixeira, José A
in
Agricultural wastes
,
Agriculture
,
antioxidant activity
2014
Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agro-industrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymerized to their cellulose and hemicellulose fractions correspond to 51.5 and 40.45 % w/w, respectively; however, the hemicellulose sugars and their composition significantly differ from one residue to another. SCG and CS particles differ in terms of morphology and crystallinity, but both materials have very low porosity and similar melting point. In terms of functional properties, SCG and CS present good water and oil holding capacities, emulsion activity and stability, and antioxidant potential, being therefore great candidates for use on food and pharmaceutical fields.
Journal Article
Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications
by
Rodrigues, Lígia
,
Teixeira, José
,
Gudiña, Eduardo
in
Animals
,
anti-adhesive activity
,
anti-biofilm activity
2016
Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.
Journal Article
Monitoring Accumulated Training and Match Load in Football: A Systematic Review
by
Teixeira, José E.
,
Forte, Pedro
,
Monteiro, António M.
in
Acceleration
,
Adolescent
,
Australian football
2021
(1) Background: Training load monitoring has become a relevant research-practice gap to control training and match demands in team sports. However, there are no systematic reviews about accumulated training and match load in football. (2) Methods: Following the preferred reporting item for systematic reviews and meta-analyses (PRISMA), a systematic search of relevant English-language articles was performed from earliest record to March 2020. The search included descriptors relevant to football, training load, and periodization. (3) Results: The literature search returned 7972 articles (WoS = 1204; Pub-Med = 869, SCOPUS = 5083, and SportDiscus = 816). After screening, 36 full-text articles met the inclusion criteria and were reviewed. Eleven of the included articles analyzed weekly training load distribution; fourteen, the weekly training load and match load distribution; and eleven were about internal and external load relationships during training. The reviewed articles were based on short-telemetry systems (n = 12), global positioning tracking systems (n = 25), local position measurement systems (n = 3), and multiple-camera systems (n = 3). External load measures were quantified with distance and covered distance in different speed zones (n = 27), acceleration and deceleration (n = 13) thresholds, accelerometer metrics (n = 11), metabolic power output (n = 4), and ratios/scores (n = 6). Additionally, the internal load measures were reported with perceived exertion (n = 16); heart-rate-based measures were reported in twelve studies (n = 12). (4) Conclusions: The weekly microcycle presented a high loading variation and a limited variation across a competitive season. The magnitude of loading variation seems to be influenced by the type of week, player’s starting status, playing positions, age group, training mode and contextual variables. The literature has focused mainly on professional men; future research should be on the youth and female accumulated training/match load monitoring.
Journal Article
Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review
by
Perestrelo, Rosa
,
Câmara, José S.
,
M. R. Rocha, Cristina
in
Analytical chemistry
,
Automation
,
biological samples
2022
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.
Journal Article
Yeast: the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast
by
Vicente, António A
,
Brányik, Tomás
,
Pires, Eduardo J
in
Alcohol
,
alcohols
,
Alcohols - metabolism
2014
Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.
Journal Article
Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity
by
Gudiña, Eduardo J.
,
Rodrigues, Ana I.
,
Rodrigues, Lígia R.
in
14/19
,
631/326/22/1292
,
631/326/2522
2017
In this work, the antifungal activity of rhamnolipids produced by
Pseudomonas aeruginosa
#112 was evaluated against
Aspergillus niger
MUM 92.13 and
Aspergillus carbonarius
MUM 05.18. It was demonstrated that the di-rhamnolipid congeners were responsible for the antifungal activity exhibited by the crude rhamnolipid mixture, whereas mono-rhamnolipids showed a weak inhibitory activity. Furthermore, in the presence of NaCl (from 375 mM to 875 mM), the antifungal activity of the crude rhamnolipid mixture and the purified di-rhamnolipids was considerably increased. Dynamic Light Scattering studies showed that the size of the structures formed by the rhamnolipids increased as the NaCl concentration increased, being this effect more pronounced in the case of di-rhamnolipids. These results were confirmed by Confocal Scanning Laser Microscopy, which revealed the formation of giant vesicle-like structures (in the µm range) by self-assembling of the crude rhamnolipid mixture in the presence of 875 mM NaCl. In the case of the purified mono- and di-rhamnolipids, spherical structures (also in the µm range) were observed at the same conditions. The results herein obtained demonstrated a direct relationship between the rhamnolipids antifungal activity and their aggregation behaviour, opening the possibility to improve their biological activities for application in different fields.
Journal Article
Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products
by
Zanuso, Elisa
,
Genisheva, Zlatina
,
Ferreira-Santos, Pedro
in
Agroforestry
,
Alternative energy sources
,
Biodiesel fuels
2020
In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers’ attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species. The present review is about the reutilization of residues and by-products from the pine species, using ecofriendly technologies to obtain added-value bioactive compounds for industrial applications.
Journal Article
Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry
by
Polizeli, Maria de Lourdes T. M.
,
Michelin, Michele
,
Romaní, Aloia
in
Acids
,
Biodiesel fuels
,
Biofuels
2020
Increasing environmental and sustainability concerns, caused by current population growth, has promoted a raising utilization of renewable bio-resources for the production of materials and energy. Recently, nanocellulose (NC) has been receiving great attention due to its many attractive features such as non-toxic nature, biocompatibility, and biodegradability, associated with its mechanical properties and those related to its nanoscale, emerging as a promising material in many sectors, namely packaging, regenerative medicine, and electronics, among others. Nanofibers and nanocrystals, derived from cellulose sources, have been mainly produced by mechanical and chemical treatments; however, the use of cellulases to obtain NC attracted much attention due to their environmentally friendly character. This review presents an overview of general concepts in NC production. Especial emphasis is given to enzymatic hydrolysis processes using cellulases and the utilization of pulp and paper industry residues. Integrated process for the production of NC and other high-value products through enzymatic hydrolysis is also approached. Major challenges found in this context are discussed along with its properties, potential application, and future perspectives of the use of enzymatic hydrolysis as a pretreatment in the scale-up of NC production.
Journal Article
Production, Composition, and Application of Coffee and Its Industrial Residues
by
Machado, Ercília M. S.
,
Mussatto, Solange I.
,
Teixeira, José A.
in
Agriculture
,
Beans
,
Beverages
2011
Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of residues are generated in the coffee industry, which are toxic and represent serious environmental problems. Coffee silverskin and spent coffee grounds are the main coffee industry residues, obtained during the beans roasting, and the process to prepare “instant coffee”, respectively. Recently, some attempts have been made to use these residues for energy or value-added compounds production, as strategies to reduce their toxicity levels, while adding value to them. The present article provides an overview regarding coffee and its main industrial residues. In a first part, the composition of beans and their processing, as well as data about the coffee world production and exportation, are presented. In the sequence, the characteristics, chemical composition, and application of the main coffee industry residues are reviewed. Based on these data, it was concluded that coffee may be considered as one of the most valuable primary products in world trade, crucial to the economies and politics of many developing countries since its cultivation, processing, trading, transportation, and marketing provide employment for millions of people. As a consequence of this big market, the reuse of the main coffee industry residues is of large importance from environmental and economical viewpoints.
Journal Article