Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Tejeda-Mora, H."
Sort by:
Circulating endothelial cells transiently increase in peripheral blood after kidney transplantation
The diagnosis of kidney allograft rejection is based on late histological and clinical markers. Early, specific and minimally-invasive biomarkers may improve rejection diagnosis. Endothelial cells (EC) are one of the earliest targets in kidney transplant rejection. We investigated whether circulating EC (cEC) could serve as an earlier and less invasive biomarker for allograft rejection. Blood was collected from a cohort of 51 kidney transplant recipients before and at multiple timepoints after transplantation, including during a for cause biopsy. The number and phenotype of EC was assessed by flow-cytometric analysis. Unbiased selection of EC was done using principal component (PCA) analysis. Paired analysis revealed a transient cEC increase of 2.1-fold on the third day post-transplant, recovering to preoperative levels at seventh day post-transplant and onwards. Analysis of HLA subtype demonstrated that cEC mainly originate from the recipient. cEC levels were not associated with allograft rejection, allograft function or other allograft pathologies. However, cEC in patients with allograft rejection and increased levels of cEC showed elevated levels of KIM-1 (kidney injury marker-1). These findings indicate that cEC numbers and phenotype are affected after kidney transplantation but may not improve rejection diagnosis.
AFM based elasticity of intestinal epithelium correlate with barrier function under drug action
Over the past few years, atomic force microscopy (AFM) has developed as a mature research tool for measuring the nanomechanical properties of tissue, cells and biological structures. The force spectroscopy mode of AFM allows the local elasticity of biological samples to be measured. The mechanical properties of cells are highly affected by homeostatic changes observed during disease. In the case of the intestine, the aetiology for some conditions is still unclear. To improve the clinical translation of pre-clinical models, a new and different approach could be to study cellular behaviour in health and disease from a mechanical point of view. Specifically, knowledge of changes in epithelial membranes in response to drugs is useful for interpreting both drug action and disease development. Here, we used human intestinal Caco-2 cells as a first step to record epithelial membrane elasticity measurements at the nanoscale using AFM. Three different drugs were selected to influence intestinal epithelium integrity by specifically targeting different functional aspects of the membrane, such as permeability and support. Results indicate a relationship between measured cell elasticity and cell viability markers, such as cellular toxicity and membrane barrier functions. Our work represents a proof-of-concept that cells suffer a particular change in elastic properties depending upon the mechanism of action of an applied drug. The following may provide an efficient approach for diagnosing intestinal pathologies and testing drugs for clinical use.
SARS-CoV-2-specific immune responses converge in kidney disease patients and controls with hybrid immunity
Healthy individuals with hybrid immunity, due to a SARS-CoV-2 infection prior to first vaccination, have stronger immune responses compared to those who were exclusively vaccinated. However, little is known about the characteristics of antibody, B- and T-cell responses in kidney disease patients with hybrid immunity. Here, we explored differences between kidney disease patients and controls with hybrid immunity after asymptomatic or mild coronavirus disease-2019 (COVID-19). We studied the kinetics, magnitude, breadth and phenotype of SARS-CoV-2-specific immune responses against primary mRNA-1273 vaccination in patients with chronic kidney disease or on dialysis, kidney transplant recipients, and controls with hybrid immunity. Although vaccination alone is less immunogenic in kidney disease patients, mRNA-1273 induced a robust immune response in patients with prior SARS-CoV-2 infection. In contrast, kidney disease patients with hybrid immunity develop SARS-CoV-2 antibody, B- and T-cell responses that are equally strong or stronger than controls. Phenotypic analysis showed that Spike (S)-specific B-cells varied between groups in lymph node-homing and memory phenotypes, yet S-specific T-cell responses were phenotypically consistent across groups. The heterogeneity amongst immune responses in hybrid immune kidney patients warrants further studies in larger cohorts to unravel markers of long-term protection that can be used for the design of targeted vaccine regimens.
Reproducible molecular networking of untargeted mass spectrometry data using GNPS
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule–focused tandem mass spectrometry (MS 2 ) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS 2 dataset and to connect this chemical insight to the user’s underlying biological questions. This can be performed within one liquid chromatography (LC)-MS 2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS 2 data with sample information (metadata) and annotated MS 2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking—one of the main analysis tools used within the GNPS platform—creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS 2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions. Global Natural Product Social Molecular Networking (GNPS) is an online tandem mass spectrometry (MS 2 ) data curation and analysis infrastructure. This protocol describes how to use GNPS to explore uploaded metabolomics data.
Wnt-dependent spatiotemporal reprogramming of bone marrow niches drives fibrosis
Bone marrow fibrosis is the most extensive matrix remodeling of the microenvironment and can include de novo formation of bone (osteosclerosis). Spatiotemporal information on the contribution of distinct bone marrow niche populations to this process is incomplete. We demonstrate that fibrosis-inducing hematopoietic cells cause profibrotic reprogramming of perivascular CXCL12 abundant reticular (CAR) progenitor cells resulting in loss of their hematopoiesis-support and upregulation of osteogenic and pro-apoptotic programs. In turn, peritrabecular osteolineage cells (OLCs) are activated in an injury-specific, Wnt-dependent manner, comparable to skeletal repair. OLCs fuel bone marrow fibrosis through their expansion and skewed differentiation, resulting in osteosclerosis and expansion of Ly6a+ fibroblasts. NCAM1 expression marks peritrabecular OLCs and their expansion into the central marrow is specific for fibrosis in mice and patients. Peritrabecular stromal b-catenin expression is linked to fibrosis in patients and inhibition of Wnt signaling reduces bone marrow fibrosis and osteosclerosis, possibly being a clinically relevant therapeutic target.