Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"Teles, Rosane M B"
Sort by:
Type I Interferon Suppresses Type II Interferon—Triggered Human Anti-Mycobacterial Responses
by
Adams, John S.
,
Schenk, Mirjam
,
Lee, Delphine J.
in
25-Hydroxyvitamin D3 1-alpha-Hydroxylase - genetics
,
25-Hydroxyvitamin D3 1-alpha-Hydroxylase - metabolism
,
Antiinfectives and antibacterials
2013
Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D—dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ—induced macrophage vitamin D—dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.
Journal Article
Jagged1 Instructs Macrophage Differentiation in Leprosy
by
Kwon, Ohyun
,
Kibbie, Jon
,
Montoya, Dennis
in
Analysis
,
Antimicrobial agents
,
Biology and Life Sciences
2016
As circulating monocytes enter the site of disease, the local microenvironment instructs their differentiation into tissue macrophages (MΦ). To identify mechanisms that regulate MΦ differentiation, we studied human leprosy as a model, since M1-type antimicrobial MΦ predominate in lesions in the self-limited form, whereas M2-type phagocytic MΦ are characteristic of the lesions in the progressive form. Using a heterotypic co-culture model, we found that unstimulated endothelial cells (EC) trigger monocytes to become M2 MΦ. However, biochemical screens identified that IFN-γ and two families of small molecules activated EC to induce monocytes to differentiate into M1 MΦ. The gene expression profiles induced in these activated EC, when overlapped with the transcriptomes of human leprosy lesions, identified Jagged1 (JAG1) as a potential regulator of MΦ differentiation. JAG1 protein was preferentially expressed in the lesions from the self-limited form of leprosy, and localized to the vascular endothelium. The ability of activated EC to induce M1 MΦ was JAG1-dependent and the addition of JAG1 to quiescent EC facilitated monocyte differentiation into M1 MΦ with antimicrobial activity against M. leprae. Our findings indicate a potential role for the IFN-γ-JAG1 axis in instructing MΦ differentiation as part of the host defense response at the site of disease in human leprosy.
Journal Article
Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae
by
Liu, Philip T.
,
Kim, Elliot W.
,
Haile, Salem
in
Analysis
,
Antiinfectives and antibacterials
,
Antimicrobial activity
2018
The immune system depends on effector pathways to eliminate invading pathogens from the host in vivo. Macrophages (MΦ) of the innate immune system are armed with vitamin D-dependent antimicrobial responses to kill intracellular microbes. However, how the physiological levels of vitamin D during MΦ differentiation affect phenotype and function is unknown.
The human innate immune system consists of divergent MΦ subsets that serve distinct functions in vivo. Both IL-15 and IL-10 induce MΦ differentiation, but IL-15 induces primary human monocytes to differentiate into antimicrobial MΦ (IL-15 MΦ) that robustly express the vitamin D pathway. However, how vitamin D status alters IL-15 MΦ phenotype and function is unknown. In this study, we found that adding 25-hydroxyvitamin D3 (25D3) during the IL-15 induced differentiation of monocytes into MΦ increased the expression of the antimicrobial peptide cathelicidin, including both CAMP mRNA and the encoded protein cathelicidin in a dose-dependent manner. The presence of physiological levels of 25D during differentiation of IL-15 MΦ led to a significant vitamin D-dependent antimicrobial response against intracellular Mycobacterium leprae but did not change the phenotype or phagocytic function of these MΦ. These data suggest that activation of the vitamin D pathway during IL-15 MΦ differentiation augments the antimicrobial response against M. leprae infection.
Our data demonstrates that the presence of vitamin D during MΦ differentiation bestows the capacity to mount an antimicrobial response against M. leprae.
Journal Article
The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy
2019
The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-β. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.
Journal Article
The cellular architecture of the antimicrobial response network in human leprosy granulomas
by
Plazyo, Olesya
,
Wadsworth, Marc H.
,
Ochoa, Maria Teresa
in
631/1647/514/1949
,
631/250/2499
,
Adolescent
2021
Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1β. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response.
Modlin and colleagues examined the skin lesions of human leprosy patients using single-cell RNA sequencing coupled to cellular spatial mapping. Their analysis maps the architecture of granulomas in leprosy lesions from patients with leprosy with localized disease (tuberculoid leprosy, reversal reaction) to those with progressive infection (lepromatous leprosy).
Journal Article
Galectin-3 Regulates the Innate Immune Response of Human Monocytes
by
Schenk, Mirjam
,
Lee, Delphine J.
,
Chung, Andrew W.
in
Antigen Presentation - drug effects
,
Antigens
,
Antigens, CD1 - metabolism
2013
Galectin-3 is a β-galactoside—binding lectin widely expressed on epithelial and hematopoietic cells, and its expression is frequently associated with a poor prognosis in cancer. Because it has not been well-studied in human infectious disease, we examined galectin-3 expression in mycobacterial infection by studying leprosy, an intracellular infection caused by Mycobacterium leprae. Galectin-3 was highly expressed on macrophages in lesions of patients with the clinically progressive lepromatous form of leprosy; in contrast, galectin-3 was almost undetectable in self-limited tuberculoid lesions. We investigated the potential function of galectin-3 in cell-mediated immunity using peripheral blood monocytes. Galectin-3 enhanced monocyte interleukin 10 production to a TLR2/1 ligand, whereas interleukin 12p40 secretion was unaffected. Furthermore, galectin-3 diminished monocyte to dendritic cell differentiation and T-cell antigen presentation. These data demonstrate an association of galectin-3 with unfavorable host response in leprosy and a potential mechanism for impaired host defense in humans.
Journal Article
Identification of a systemic interferon-γ inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction
by
Bobosha, Kidist
,
Tió-Coma, Maria
,
Banu, Sayera
in
Antiinfectives and antibacterials
,
Antimicrobial agents
,
Bacilli
2019
Reversal reactions (RRs) in leprosy are characterized by a reduction in the number of bacilli in lesions associated with an increase in cell-mediated immunity against the intracellular bacterium Mycobacterium leprae, the causative pathogen of leprosy. To identify the mechanisms that contribute to cell-mediated immunity in leprosy, we measured changes in the whole blood-derived transcriptome of patients with leprosy before, during and after RR. We identified an 'RR signature' of 1017 genes that were upregulated at the time of the clinical diagnosis of RR. Using weighted gene correlated network analysis (WGCNA), we detected a module of 794 genes, bisque4, that was significantly correlated with RR, of which 434 genes were part of the RR signature. An enrichment for both IFN-γ and IFN-β downstream gene pathways was present in the RR signature as well as the RR upregulated genes in the bisque4 module, including those encoding proteins of the guanylate binding protein (GBP) family that contributes to antimicrobial responses against mycobacteria. Specifically, GBP1, GBP2, GBP3 and GBP5 mRNAs were upregulated in the RR peripheral blood transcriptome, with GBP1, GBP2 and GBP5 mRNAs also upregulated in the RR disease lesion transcriptome. These data indicate that RRs involve a systemic upregulation of IFN-γ downstream genes including GBP family members as part of the host antimicrobial response against mycobacteria.
Journal Article
Editorial: Strategies Played by Immune Cells and Mycobacteria in the Battle Between Antimicrobial Activity and Bacterial Survival
by
Ochoa, Maria Teresa
,
Jo, Eun-Kyeong
,
Schmitz, Veronica
in
Anti-Infective Agents - adverse effects
,
Anti-Infective Agents - therapeutic use
,
Antigens
2022
In addition,Park et al.review the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of the currently anti-TB drugs. The long-term treatment may increase the risk of multidrug-resistant (MDR)- and extensively drug-resistant (XDR)-Mtb emergence. [...]the ability of mycobacteria to inhibit phagolysosomal fusion also represents a key step in the determination of latent and active disease and can weaken the ability of the host immunity to fight against MDR- and XDR-Mtb.Saha et al.provide a new mechanism for mycobacteria evasion mediated by the macrophage at protein Coronin1 by the increase of intracellular cAMP levels upon mycobacterial infection. The pretreatment of recombinant type I IFN led to an increased NO production in the mouse lungs during M. abscessus infection, highlighting the function of the type I IFN-NO axis in the host defense against M. abscessus. Because cytotoxic NO action appears to be controversial in human monocytes/macrophages, future studies are warranted to clarify the function of SIRT7 and type I IFN in the context of NO regulation during the human antimycobacterial defense.
Journal Article
IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide
by
Krogstad, Paul A.
,
Yang, Otto O.
,
Ferrini, Monica G.
in
ACE2
,
Adaptive immunity
,
Angiotensin-Converting Enzyme 2
2023
The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified.
Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy.
Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity.
Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Journal Article
Extracellular traps released by antimicrobial TH17 cells contribute to host defense
by
Mouton, Alice
,
Teles, Rosane M.B.
,
Andrade, Priscila R.
in
Acne
,
Acne Vulgaris - immunology
,
Acne Vulgaris - microbiology
2021
TH17 cell subpopulations have been defined that contribute to inflammation and homeostasis, yet the characteristics of TH17 cells that contribute to host defense against infection are not clear. To elucidate the antimicrobial machinery of the TH17 subset, we studied the response to Cutibacterium acnes, a skin commensal that is resistant to IL-26, the only known TH17-secreted protein with direct antimicrobial activity. We generated C. acnes-specific antimicrobial TH17 clones (AMTH17) with varying antimicrobial activity against C. acnes, which we correlated by RNA sequencing to the expression of transcripts encoding proteins that contribute to antimicrobial activity. Additionally, we validated that AMTH17-mediated killing of C. acnes and bacterial pathogens was dependent on the secretion of granulysin, granzyme B, perforin, and histone H2B. We found that AMTH17 cells can release fibrous structures composed of DNA decorated with histone H2B that entangle C. acnes that we call T cell extracellular traps (TETs). Within acne lesions, H2B and IL-17 colocalized in CD4+ T cells, in proximity to TETs in the extracellular space composed of DNA decorated with H2B. This study identifies a functionally distinct subpopulation of TH17 cells with an ability to form TETs containing secreted antimicrobial proteins that capture and kill bacteria.
Journal Article