Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Tenyér, Anna"
Sort by:
Wood ants as biological control of the forest pest beetles Ips spp
Climate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles ( Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of Formica polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on those infested by  Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.
Consequences of Climate Change-Induced Habitat Conversions on Red Wood Ants in a Central European Mountain: A Case Study
The consequences of anthropogenic climate change are one of the major concerns of conservation biology. A cascade of negative effects is expected to affect various ecosystems, one of which is Central European coniferous forests and their unique biota. These coniferous forests are the primary habitat of many forest specialist species such as red wood ants. Climate change-induced rising of temperature allows trees to skip winter hibernation, making them more vulnerable to storms that cause wind felling, and in turn, promotes bark beetle infestations that results in unscheduled clear-cuttings. Red wood ants can also be exposed to such habitat changes. We investigated the effects of bark beetle-induced clear-cutting and the absence of coniferous trees on colonies of Formica polyctena, including a mixed-coniferous forest as a reference. Our aim was to investigate how these habitat features affect the nest characteristics and nesting habits of F. polyctena. Our results indicate that, in the absence of conifers, F. polyctena tend to use different alternatives for nest material, colony structure, and food sources. However, the vitality of F. polyctena colonies significantly decreased (smaller nest mound volumes). Our study highlights the ecological flexibility of this forest specialist and its potential to survive under extreme conditions.
Large- and Small-Scale Environmental Factors Drive Distributions of Ant Mound Size Across a Latitudinal Gradient
Red wood ants are keystone species of forest ecosystems in Europe. Environmental factors and habitat characteristics affect the size of their nest mounds, an important trait being in concordance with a colony’s well-being and impact on its surroundings. In this study, we investigated the effect of large-scale (latitude and altitude) and small-scale environmental factors (e.g., characteristics of the forest) on the size of nest mounds of Formica polyctena in Central Europe. We predicted that the change in nest size is in accordance with Bergmann’s rule that states that the body size of endotherm animals increases with the higher latitude and/or altitude. We found that the size of nests increased along the latitudinal gradient in accordance with Bergmann’s rule. The irradiation was the most important factor responsible for the changes in nest size, but temperature and local factors, like the perimeter of the trees and their distance from the nest, were also involved. Considering our results, we can better understand the long-term effects and consequences of the fast-changing environmental factors on this ecologically important group. This knowledge can contribute to the planning of forest management tactics in concordance with the assurance of the long-term survival of red wood ants.