Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
31
result(s) for
"Teoh, Roger"
Sort by:
The social costs of aviation CO2 and contrail cirrus
by
Sterner, Thomas
,
Pettersson, Susanne
,
Azar, Christian
in
704/106/694/2739
,
704/844/843
,
706/4066
2025
The radiative forcing (RF) of contrail cirrus is substantial, though short-lived, uncertain, and heterogeneous, whereas the RF from CO₂ emissions is long-term and more predictable. To balance these impacts, we calculate the social costs of CO₂ and contrail cirrus using a modified Dynamic Integrated Climate Economy (DICE) model, spanning three discount rates, two damage functions, and three climate pathways. The main case estimate of the global social cost ratio of contrail cirrus to aviation CO₂ emissions ranges from 0.075 to 0.57, depending on assumptions. Accounting for uncertainty in contrail cirrus RF and climate efficacy further widens this range. We also quantify flight-specific social costs of contrail cirrus by analyzing nearly 500,000 flights over the North Atlantic, revealing substantial variability due to meteorological conditions. While uncertainty is considerable, our findings suggest that carefully implemented operational contrail avoidance could offer climate benefits even when the social cost of additional CO₂ emissions is considered.
This study quantifies the social costs of aviation’s CO₂ emissions and contrail cirrus. Targeting flights with high contrail cirrus impacts could substantially reduce aviation’s climate damages.
Journal Article
Operational differences lead to longer lifetimes of satellite detectable contrails from more fuel efficient aircraft
2024
Clouds produced by aircraft (known as contrails) contribute over half of the positive radiative forcing from aviation, but the size of this warming effect is highly uncertain. Their radiative effect is highly dependent on the microphysical properties and meteorological background state, varying strongly over the contrail lifecycle. In-situ observations have demonstrated an impact of aircraft and fuel type on contrail properties close to the aircraft, but there are few observational constraints at these longer timescales, despite these having a strong impact in high-resolution and global models. This work provides an observational quantification of these contrail controlling factors, matching air traffic data to satellite observations of contrails to isolate the role of the aircraft type in contrail properties and evolution. Investigating over 64 000 cases, a relationship between aircraft type and contrail formation is observed, with more efficient aircraft forming longer-lived satellite-detectable contrails more frequently, which could lead to a larger climate impact. This increase in contrail formation and lifetime is primarily driven by an increase in flight altitude. Business jets are also found to produce longer-lived satellite-detectable contrails despite their lower fuel flow, as they fly at higher altitudes. The increase in satellite-detected contrails behind more efficient aircraft suggests a trade-off between aircraft greenhouse gas emissions and the aviation climate impact through contrail production, due to differences in aircraft operation.
Journal Article
Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing
by
Schumann, Ulrich
,
Stettler, Marc E. J.
,
Teoh, Roger
in
Air traffic management
,
Aircraft
,
Airspace
2020
Contrail cirrus introduce a short-lived but significant climate forcing that could be mitigated by small changes in aircraft cruising altitudes. This paper extends a recent study to evaluate the efficacy of several vertical flight diversion strategies to mitigate contrail climate forcing, and estimates impacts to air traffic management (ATM). We use six one-week periods of flight track data in the airspace above Japan (between May 2012 and March 2013), and simulate contrails using the contrail cirrus prediction model (CoCiP). Previous studies have predominantly optimised a diversion of every contrail-forming flight to minimise its formation or radiative forcing. However, our results show that these strategies produce a suboptimal outcome because most contrails have a short lifetime, and some have a cooling effect. Instead, a strategy that reroutes 15.3% of flights to avoid long-lived warming contrails, while allowing for cooling contrails, reduces the contrail energy forcing (EFcontrail) by 105% [91.8, 125%] with a total fuel penalty of 0.70% [0.66, 0.73%]. A minimum EFtotal strategy (contrails + CO2), diverting 20.1% of flights, reduces the EFcontrail by the same magnitude but also reduces the total fuel consumption by 0.40% [0.31, 0.47%]. For the diversion strategies explored, between 9% and 14% of diversions lead to a loss of separation standards between flights, demonstrating a modest scale of ATM impacts. These results show that small changes in flight altitudes are an opportunity for aviation to significantly and rapidly reduce its effect on the climate.
Journal Article
Design Principles for a Contrail-Minimizing Trial in the North Atlantic
2022
The aviation industry has committed to decarbonize its CO2 emissions. However, there has been much less industry focus on its non-CO2 emissions, despite recent studies showing that these account for up to two-thirds of aviation’s climate impact. Parts of the industry have begun to explore the feasibility of potential non-CO2 mitigation options, building on the scientific research undertaken in recent years, by establishing demonstrations and operational trials to test parameters of interest. This paper sets out the design principles for a large trial in the North Atlantic. Considerations include the type of stakeholders, location, when to intervene, what flights to target, validation, and other challenges. Four options for safely facilitating a trial are outlined based on existing air-traffic-management processes, with three of these readily deployable. Several issues remain to be refined and resolved as part of any future trial, including those regarding meteorological and contrail forecasting, the decision-making process for stakeholders, and safely integrating these flights into conventional airspace. While this paper is not a formal concept of operations, it provides a stepping stone for policymakers, industry leaders, and other stakeholders with an interest in reducing aviation’s total climate impact, to understand how a large-scale warming-contrail-minimizing trial could work.
Journal Article
The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing
by
Shapiro, Marc L
,
Platt, John C
,
Geraedts, Scott
in
Avoidance
,
climate forcing
,
Climate prediction
2024
Previous work has shown that while the net effect of aircraft condensation trails (contrails) on the climate is warming, the exact magnitude of the energy forcing per meter of contrail remains uncertain. In this paper, we explore the skill of a Lagrangian contrail model (CoCiP) in identifying flight segments with high contrail energy forcing. We find that skill is greater than climatological predictions alone, even accounting for uncertainty in weather fields and model parameters. We estimate the uncertainty due to humidity by using the ensemble ERA5 weather reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) as Monte Carlo inputs to CoCiP. We unbias and correct under-dispersion on the ERA5 humidity data by forcing a match to the distribution of in situ humidity measurements taken at cruising altitude. We take CoCiP energy forcing estimates calculated using one of the ensemble members as a proxy for ground truth, and report the skill of CoCiP in identifying segments with large positive proxy energy forcing. We further estimate the uncertainty due to model parameters in CoCiP by performing Monte Carlo simulations with CoCiP model parameters drawn from uncertainty distributions consistent with the literature. When CoCiP outputs are averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%, while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown) contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail avoidance.
Journal Article
The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021
by
Dray, Lynnette
,
Shapiro, Marc
,
Stettler, Marc E. J.
in
ADS-B system
,
Aeronautics
,
Air pollution
2024
Aviation emissions that are dispersed into the Earth's atmosphere affect the climate and air pollution, with significant spatiotemporal variation owing to heterogeneous aircraft activity. In this paper, we use historical flight trajectories derived from Automatic Dependent Surveillance–Broadcast (ADS-B) telemetry and reanalysis weather data for 2019–2021 to develop the Global Aviation emissions Inventory based on ADS-B (GAIA). In 2019, 40.2 million flights collectively travelled 61 billion kilometres using 283 Tg of fuel, leading to CO2, NOX and non-volatile particulate matter (nvPM) mass and number emissions of 893 Tg, 4.49 Tg, 21.4 Gg and 2.8 × 1026 respectively. Global responses to COVID-19 led to reductions in the annual flight distance flown and CO2 and NOX emissions in 2020 (−43 %, −48 % and −50 % respectively relative to 2019) and 2021 (−31 %, −41 % and −43 % respectively), with significant regional variability. Short-haul flights with durations < 3 h accounted for 83 % of all flights but only for 35 % of the 2019 CO2 emissions, while long-haul flights with durations > 6 h (5 % of all flights) were responsible for 43 % of CO2 and 49 % of NOX emissions. Globally, the actual flight trajectories flown are, on average, ∼ 5 % greater than the great circle path between the origin and destination airports, but this varies by region and flight distance. An evaluation of 8705 unique flights between London and Singapore showed large variabilities in the flight trajectory profile, fuel consumption and emission indices. GAIA captures the spatiotemporal distribution of aviation activity and emissions and is provided for use in future studies to evaluate the negative externalities arising from global aviation.
Journal Article
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
2022
Around 5 % of anthropogenic radiative forcing (RF) is attributed to aviation CO2 and non-CO2 impacts. This paper quantifies aviation emissions and contrail climate forcing in the North Atlantic, one of the world's busiest air traffic corridors, over 5 years. Between 2016 and 2019, growth in CO2 (+3.13 % yr−1) and nitrogen oxide emissions (+4.5 % yr−1) outpaced increases in flight distance (+3.05 % yr−1). Over the same period, the annual mean contrail cirrus net RF (204–280 mW m−2) showed significant inter-annual variability caused by variations in meteorology. Responses to COVID-19 caused significant reductions in flight distance travelled (−66 %), CO2 emissions (−71 %) and the contrail net RF (−66 %) compared with the prior 1-year period. Around 12 % of all flights in this region cause 80 % of the annual contrail energy forcing, and the factors associated with strongly warming/cooling contrails include seasonal changes in meteorology and radiation, time of day, background cloud fields, and engine-specific non-volatile particulate matter (nvPM) emissions. Strongly warming contrails in this region are generally formed in wintertime, close to the tropopause, between 15:00 and 04:00 UTC, and above low-level clouds. The most strongly cooling contrails occur in the spring, in the upper troposphere, between 06:00 and 15:00 UTC, and without lower-level clouds. Uncertainty in the contrail cirrus net RF (216–238 mW m−2) arising from meteorology in 2019 is smaller than the inter-annual variability. The contrail RF estimates are most sensitive to the humidity fields, followed by nvPM emissions and aircraft mass assumptions. This longitudinal evaluation of aviation contrail impacts contributes a quantified understanding of inter-annual variability and informs strategies for contrail mitigation.
Journal Article
An updated microphysical model for particle activation in contrails: the role of volatile plume particles
by
Stettler, Marc E. J
,
Ponsonby, Joel
,
Kärcher, Bernd
in
Air pollution
,
Aircraft
,
Ambient temperature
2025
Global simulations suggest the mean annual contrail cirrus net radiative forcing is comparable to that of aviation's accumulated CO.sub.2 emissions. Currently, these simulations assume non-volatile particulate matter (nvPM) and ambient particles are the only source of condensation nuclei, omitting activation of volatile particulate matter (vPM) formed in the nascent plume. Here, we extend a microphysical model to include vPM and benchmark this against a more advanced parcel model (pyrcel) modified to treat contrail formation. We explore how the apparent emission index (EI) of contrail ice crystals (AEI.sub.ice) scales with EI.sub.nvPM, vPM properties, ambient temperature, and aircraft/fuel characteristics. We find model agreement within 10 %-30 % in the previously defined \"soot-poor\" regime. However, discrepancies increase non-linearly (up to 60 %) in the \"soot-rich\" regime, due to differing treatment of droplet growth. Both models predict that, in the \"soot-poor\" regime, AEI.sub.ice approaches 10.sup.16 kg.sup.-1 for low ambient temperatures ( 210 K) and sulfur-rich vPM, which is comparable to estimates in the \"soot-rich\" regime. Moreover, our sensitivity analyses suggest that the point of transition between the \"soot-poor\" and \"soot-rich\" regimes is a dynamic threshold that ranges from 10.sup.13 -10.sup.16 kg.sup.-1 and depends sensitively on ambient temperature and vPM properties, underlining the need for vPM emission characterisation measurements. We suggest that existing contrail simulations omitting vPM activation may underestimate AEI.sub.ice, especially for flights powered by lean-burn engines. Furthermore, our results imply that, under these conditions, AEI.sub.ice might be reduced by (i) reducing fuel sulfur content, (ii) minimising organic emissions, and/or (iii) avoiding cooler regions of the atmosphere.
Journal Article
Global aviation contrail climate effects from 2019 to 2021
2024
The current best-estimate of the global annual mean radiative forcing (RF) attributable to contrail cirrus is thought to be 3 times larger than the RF from aviation's cumulative CO2 emissions. Here, we simulate the global contrail RF for 2019–2021 using reanalysis weather data and improved engine emission estimates along actual flight trajectories derived from Automatic Dependent Surveillance–Broadcast telemetry. Our 2019 global annual mean contrail net RF (62.1 mW m−2) is 44 % lower than current best estimates for 2018 (111 [33, 189] mW m−2, 95 % confidence interval). Regionally, the contrail net RF is largest over Europe (876 mW m−2) and the USA (414 mW m−2), while the RF values over East Asia (64 mW m−2) and China (62 mW m−2) are close to the global average, because fewer flights in these regions form persistent contrails resulting from lower cruise altitudes and limited ice supersaturated regions in the subtropics due to the Hadley Circulation. Globally, COVID-19 reduced the flight distance flown and contrail net RF in 2020 (−43 % and −56 %, respectively, relative to 2019) and 2021 (−31 % and −49 %, respectively) with significant regional variations. Around 14 % of all flights in 2019 formed a contrail with a net warming effect, yet only 2 % of all flights caused 80 % of the annual contrail energy forcing. The spatiotemporal patterns of the most strongly warming and cooling contrail segments can be attributed to flight scheduling, engine particle number emissions, tropopause height, and background radiation fields. Our contrail RF estimates are most sensitive to corrections applied to the global humidity fields, followed by assumptions on the engine particle number emissions, and are least sensitive to radiative heating effects on the contrail plume and contrail–contrail overlapping. Using this sensitivity analysis, we estimate that the 2019 global contrail net RF could range between 34.8 and 74.8 mW m−2.
Journal Article
The importance of an informed choice of CO2-equivalence metrics for contrail avoidance
2024
One of the proposed ways to reduce the climate impact of civil aviation is rerouting aircraft to minimise the formation of warming contrails. As this strategy may increase fuel consumption, it would only be beneficial if the climate impact reduction from the avoided contrails exceeds the negative impact of any additional carbon dioxide (CO2) emitted by the rerouted flight. In this study, we calculate the surface temperature response of almost half a million flights that crossed the North Atlantic sector in 2019 and compare it to the temperature response of hypothetical rerouted flights. The climate impacts of contrails and CO2 are assessed through the perspective of CO2-equivalence metrics, represented here as nine combinations of different definitions and time horizons. We estimate that the total emitted CO2 and the persistent contrails formed will have warmed the climate by 17.2 µK in 2039, 13.7 µK in 2069, and 14.1 µK in 2119. Under an idealised scenario where 1 % additional carbon dioxide is enough to reroute all contrail-forming flights and avoid contrail formation completely, total warming would decrease by 4.9 (-28 %), 2.6 (-19 %), and 1.9 (-13 %) µK in 2039, 2069, and 2119, respectively. In most rerouting cases, the results based on the nine different CO2-equivalence metrics agree that rerouting leads to a climate benefit, assuming that contrails are avoided as predicted. But the size of that benefit is very dependent on the choice of CO2-equivalence metrics, contrail efficacy and CO2 penalty. Sources of uncertainty not considered here could also heavily influence the perceived benefit. In about 10 % of rerouting cases, the climate damage resulting from contrail avoidance indicated by CO2-equivalence metrics integrated over a 100-year time horizon is not predicted by metrics integrated over a 20-year time horizon. This study highlights, using North Atlantic flights as a case study, the implications of the choice of CO2-equivalence metrics for contrail avoidance, but the choice of metric implies a focus on a specific climate objective, which is ultimately a political decision.
Journal Article