Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
86 result(s) for "Terreran, G."
Sort by:
A fast-rising tidal disruption event from a candidate intermediate-mass black hole
Massive black holes (BHs) at the centres of massive galaxies are ubiquitous. The population of BHs within dwarf galaxies, on the other hand, is not yet known. Dwarf galaxies are thought to harbour BHs with proportionally small masses, including intermediate-mass BHs, with masses 10 2  <  M BH  < 10 6  solar masses ( M ⊙ ). Identification of these systems has historically relied on the detection of light emitted from accreting gaseous disks close to the BHs. Without this light, they are difficult to detect. Tidal disruption events, the luminous flares produced when a star strays close to a BH and is shredded, are a direct way to probe massive BHs. The rise times of these flares theoretically correlate with the BH mass. Here we present AT 2020neh, a fast-rising tidal disruption event candidate, hosted by a dwarf galaxy. AT 2020neh can be described by the tidal disruption of a main sequence star by a 10 4.7 –10 5.9   M ⊙ BH. We find the observable rate of fast-rising nuclear transients like AT 2020neh to be low, at ≲2 × 10 −8 events Mpc −3  yr −1 . Finding non-accreting BHs in dwarf galaxies is important to determine how prevalent BHs are within these galaxies, and to constrain models of BH formation. AT 2020neh-like events may provide a galaxy-independent method of measuring the masses of intermediate-mass BHs. The rapid rise in brightness of a tidal disruption event is attributed to the destruction of a main sequence star by a black hole of intermediate mass in a dwarf galaxy. Such events are rare, and non-accreting intermediate-mass black holes are challenging to find.
A kilonova as the electromagnetic counterpart to a gravitational-wave source
Observations and modelling of an optical transient counterpart to a gravitational-wave event and γ-ray burst reveal that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a source of heavy elements. When neutron stars collide Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. Gravitational waves were discovered with the detection of binary black-hole mergers 1 and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova 2 , 3 , 4 , 5 . The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate 6 . Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst 7 , 8 . The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
Publisher Correction: Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm
In the version of this Article originally published the Fig. 6 y axis label read 'Mej' but should have read 'MNi'. This has now been corrected.
Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm
Type II supernovae are the final stage of massive stars (above 8  M ⊙ ) which retain part of their hydrogen-rich envelope at the moment of explosion. They typically eject up to 15 M ⊙ of material, with peak magnitudes of −17.5 mag and energies in the order of 10 51 erg, which can be explained by neutrino-driven explosions and neutron star formation. Here, we present our study of OGLE-2014-SN-073, one of the brightest type II supernovae ever discovered, with an unusually broad lightcurve combined with high ejecta velocities. From our hydrodynamical modelling, we infer a remarkable ejecta mass of 60 - 16 + 42 M ⊙ and a relatively high explosion energy of 12 .4 - 5 .9 + 13 .0 × 1 0 51 erg. We show that this object belongs, along with a very small number of other hydrogen-rich supernovae, to an energy regime that is not explained by standard core-collapse neutrino-driven explosions. We compare the quantities inferred by the hydrodynamical modelling with the expectations of various exploding scenarios and attempt to explain the high energy and luminosity released. We find some qualitative similarities with pair-instability supernovae, although the prompt injection of energy by a magnetar seems to be a viable alternative explanation for such an extreme event. The authors present a spectrophotometric and hydrodynamical study of supernova OGLE-2014-SN-073, which had remarkably high inferred ejecta mass and energy, potentially higher than can be explained with canonical core-collapse neutrino-driven explosions.
The story of SN 2021aatd -- a peculiar 1987A-like supernova with an early-phase luminosity excess
There is a growing number of peculiar events that cannot be assigned to any of the main supernova (SN) classes. SN 1987A and a handful of similar objects, thought to be explosive outcomes of blue supergiant stars, belong to them: while their spectra closely resemble those of H-rich (IIP) SNe, their light-curve (LC) evolution is very different. Here we present the detailed photometric and spectroscopic analysis of SN 2021aatd, a peculiar Type II explosion: while its early-time evolution resembles that of the slowly evolving, double-peaked SN 2020faa (however, at a lower luminosity scale), after \\(\\sim\\)40 days, its LC shape becomes similar to that of SN 1987A-like explosions. Beyond comparing LCs, color curves, and spectra of SN 2021aatd to that of SNe 2020faa, 1987A, and of other objects, we compare the observed spectra with our own SYN++ models and with the outputs of published radiative transfer models. We also modeled the pseudo-bolometric LCs of SNe 2021aatd and 1987A assuming a two-component (core+shell) ejecta, and involving the rotational energy of a newborn magnetar in addition to radioactive decay. We find that both the photometric and spectroscopic evolution of SN 2021aatd can be well described with the explosion of a \\(\\sim\\)15 \\(M_\\odot\\) blue supergiant star. Nevertheless, SN 2021aatd shows higher temperatures and weaker Na ID and Ba II 6142 A lines than SN 1987A, which is reminiscent of rather to IIP-like atmospheres. With the applied two-component ejecta model (counting with both decay and magnetar energy), we can successfully describe the bolometric LC of SN 2021aatd, including the first \\(\\sim\\)40-day long phase showing an excess compared to 87A-like SNe but being strikingly similar to that of the long-lived SN 2020faa. Nevertheless, finding a unified model that also explains the LCs of more luminous events (like SN 2020faa) is still a matter of concern.
Peculiar Spectral Evolution of the Type I Supernova 2019eix: A Possible Double Detonation from a Helium Shell on a Sub-Chandrasekhar-mass White Dwarf
We present photometric and spectroscopic data for the nearby Type I supernova (SN Ia) 2019eix (originally classified as a SN Ic), from its discovery day up to 100 days after maximum brightness. Before maximum light SN 2019eix resembles a typical SN Ic, albeit lacking the usual \\ion{O}{1} feature. Its lightcurve is similar to the typical SN Ic with decline rates of (\\(\\Delta M_{15,V}= 0.84\\)) and absolute magnitude of \\(M_{V}= -18.35\\). However, after maximum light this SN has unusual spectroscopic features, a large degree of line blending, significant line blanketing in the blue (\\(\\lambda < 5000\\)\\AA), and strong Ca II absorption features during and after peak brightness. These unusual spectral features are similar to models of sub-luminous thermonuclear explosions, specifically double-detonation models of SNe Ia. Photometrically SN 2019eix appears to be somewhat brighter with slower decline rates than other double detonation candidates. We modeled the spectra using the radiative transfer code TARDIS using SN 1994I (a SN Ic) as a base model to see whether we could reproduce the unusual features of SN 2019eix and found them to be consistent with the exception of the \\ion{O}{1} feature. We also compared SN 2019eix with double detonation models and found them to match the observations of SN 2019eix best, but failed to reproduce its full photometric and spectroscopic evolution.
Line shapes in narrow-line Seyfert 1 galaxies: a tracer of physical properties?
Line profiles can provide fundamental information on the physics of active galactic nuclei (AGN). In the case of narrow-line Seyfert 1 galaxies (NLS1s) this is of particular importance since past studies revealed how their permitted line profiles are well reproduced by a Lorentzian function instead of a Gaussian. This has been explained with different properties of the broad-line region (BLR), which may present a more pronounced turbulent motions in NLS1s with respect to other AGN. We investigated the line profiles in a recent large NLS1 sample classified using SDSS, and we divided the sources into two subsamples according to their line shapes, Gaussian or Lorentzian. The line profiles clearly separate all the properties of NLS1s. Black hole mass, Eddington ratio, [O III], and Fe II strength are all very different in the Lorentzian and Gaussian samples. We interpret this in terms of evolution within the class of NLS1s. The Lorentzian sources may be the youngest objects, while Gaussian profiles may be typically associated to more evolved objects. Further detailed spectroscopic studies are needed to fully confirm our hypothesis.
Massive stars exploding in a He-rich circumstellar medium \\(-\\) X. Flash spectral features in the Type Ibn SN 2019cj and observations of SN 2018jmt
We present optical and near-infrared observations of two Type Ibn supernovae (SNe), SN 2018jmt and SN 2019cj. Their light curves have rise times of about 10 days, reaching an absolute peak magnitude of \\(M_g\\)(SN 2018jmt) = \\(-\\)19.07 \\(\\pm\\) 0.37 and \\(M_V\\)(SN 2019cj) = \\(-\\)18.94 \\(\\pm\\) 0.19 mag, respectively. The early-time spectra of SN 2018jmt are dominated by a blue continuum, accompanied by narrow (600\\(-\\)1000 km~s\\(^{-1}\\)) He I lines with P-Cygni profile. At later epochs, the spectra become more similar to those of the prototypical SN Ibn 2006jc. At early phases, the spectra of SN 2019cj show flash ionisation emission lines of C III, N III and He II superposed on a blue continuum. These features disappear after a few days, and then the spectra of SN 2019cj evolve similarly to those of SN 2018jmt. The spectra indicate that the two SNe exploded within a He-rich circumstellar medium (CSM) lost by the progenitors a short time before the explosion. We model the light curves of the two SNe Ibn to constrain the progenitor and the explosion parameters. The ejecta masses are consistent with either that expected for a canonical SN Ib (\\(\\sim\\) 2 M\\(_{\\odot}\\)) or those from a massive WR star (\\(>\\) \\(\\sim\\) 4 M\\(_{\\odot}\\)), with the kinetic energy on the order of \\(10^{51}\\) erg. The lower limit on the ejecta mass (\\(>\\) \\(\\sim\\) 2 M\\(_{\\odot}\\)) argues against a scenario involving a relatively low-mass progenitor (e.g., \\(M_{ZAMS}\\) \\(\\sim\\) 10 M\\(_{\\odot}\\)). We set a conservative upper limit of \\(\\sim\\)0.1 M\\(_{\\odot}\\) for the \\(^{56}\\)Ni masses in both SNe. From the light curve modelling, we determine a two-zone CSM distribution, with an inner, flat CSM component, and an outer CSM with a steeper density profile. The physical properties of SN 2018jmt and SN 2019cj are consistent with those expected from the core collapse of relatively massive, stripped-envelope (SE) stars.
Absorbed relativistic jets in radio-quiet narrow-line Seyfert 1 galaxies
Narrow-line Seyfert 1 (NLS1) galaxies are peculiar active galactic nuclei (AGN). Most of them do not show strong radio emission, but recently seven radio-quiet (or -silent) NLS1s have been detected flaring multiple times at 37 GHz by the Mets\"ahovi Radio Telescope, indicating the presence of relativistic jets in these peculiar sources. We observed them with the Karl G. Jansky Very Large Array (JVLA) in A configuration at 1.6, 5.2, and 9.0 GHz. Our results show that these sources are either extremely faint or not detected in the JVLA bands. At those frequencies, the radio emission from their relativistic jet must be absorbed, either via synchrotron self-absorption as it occurs in gigahertz-peaked sources or, more likely, via free-free absorption by a screen of ionized gas associated with starburst activity or shocks. Our findings cast new shadows on the radio-loudness criterion, which seems to be more and more frequently a misleading parameter. New high-frequency and high-resolution radio observations are essential to test our hypotheses.
The Diverse Properties of Type Icn Supernovae Point to Multiple Progenitor Channels
We present a sample of Type Icn supernovae (SNe Icn), a newly-discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) as well as two objects (SN 2019jc and SN 2021ckj) not yet published in the literature. The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties we fit their bolometric light curves to a semi-analytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of \\(^{56}\\)Ni. We infer low ejecta masses (\\(\\lesssim\\) 2 M\\(_\\odot\\)) and \\(^{56}\\)Ni masses (\\(\\lesssim\\) 0.04 M\\(_\\odot\\)) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an upper limit on the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on the estimated ejecta masses, \\(^{56}\\)Ni masses, and explosion site properties, we favor a low-mass, ultra-stripped star as the progenitor of some SNe Icn. For others, we suggest that a Wolf-Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.