Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Terriente-Felix, Ana"
Sort by:
Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster
2022
Trans-astaxanthin (TA), a keto-carotenoid found in aquatic invertebrates, possesses anti-oxidative and anti-inflammatory activities. Rotenone is used to induce oxidative stress-mediated Parkinson’s disease (PD) in animals. We probed if TA would protect against rotenone-induced toxicity in
Drosophila melanogaster
. Trans-astaxanthin (0, 0.1, 0.5, 1.0, 2.5, 10, and 20 mg/10 g diet) and rotenone (0, 250 and 500 μM) were separately orally exposed to flies in the diet to evaluate longevity and survival rates, respectively. Consequently, we evaluated the ameliorative actions of TA (1.0 mg/10 g diet) on rotenone (500 μM)-induced toxicity in Drosophila after 7 days’ exposure. Additionally, we performed molecular docking of TA against selected pro-inflammatory protein targets. We observed that TA (0.5 and 1.0 mg/10 g diet) increased the lifespan of
D. melanogaster
by 36.36%. Moreover, TA (1.0 mg/10 g diet) ameliorated rotenone-mediated inhibition of Catalase, Glutathione-S-transferase and Acetylcholinesterase activities, and depletion of Total Thiols and Non-Protein Thiols contents. Trans-astaxanthin prevented behavioural dysfunction and accumulation of Hydrogen Peroxide, Malondialdehyde, Protein Carbonyls and Nitric Oxide in
D. melanogaster
(
p
< 0.05). Trans-astaxanthin showed higher docking scores against the pro-inflammatory protein targets evaluated than the standard inhibitors. Conclusively, the structural features of TA might have contributed to its protective actions against rotenone-induced toxicity.
Journal Article
Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
by
Terriente-Felix, Ana
,
Whitworth, Alexander J.
,
Wilson, Emma L.
in
1-Phosphatidylinositol 4-kinase
,
Analysis
,
Animals
2020
Balanced mitochondrial fission and fusion play an important role in shaping and distributing mitochondria, as well as contributing to mitochondrial homeostasis and adaptation to stress. In particular, mitochondrial fission is required to facilitate degradation of damaged or dysfunctional units via mitophagy. Two Parkinson's disease factors, PINK1 and Parkin, are considered key mediators of damage-induced mitophagy, and promoting mitochondrial fission is sufficient to suppress the pathological phenotypes in Drosophila Pink1/parkin mutants. We sought additional factors that impinge on mitochondrial dynamics and which may also suppress Pink1/parkin phenotypes. We found that the Drosophila phosphatidylinositol 4-kinase IIIβ homologue, Four wheel drive (Fwd), promotes mitochondrial fission downstream of the pro-fission factor Drp1. Previously described only as male sterile, we identified several new phenotypes in fwd mutants, including locomotor deficits and shortened lifespan, which are accompanied by mitochondrial dysfunction. Finally, we found that fwd overexpression can suppress locomotor deficits and mitochondrial disruption in Pink1/parkin mutants, consistent with its function in promoting mitochondrial fission. Together these results shed light on the complex mechanisms of mitochondrial fission and further underscore the potential of modulating mitochondrial fission/fusion dynamics in the context of neurodegeneration.
Journal Article
Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models
2024
Background
Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies.
Methods
We employed in vivo
Drosophila
and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays.
Results
We show that the
Drosophila
homolog Cisd accumulates in
Pink1
and
parkin
mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in
Pink1/parkin
mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of
Pink1/parkin
mutants.
Conclusion
Altogether, our studies indicate that Cisd accumulation during ageing and in
Pink1/parkin
mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.
Graphical Abstract
Journal Article
Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila
by
Miguel-Aliaga, Irene
,
Terriente-Felix, Ana
,
Wayland, Matthew
in
Animals
,
Biological Sciences
,
Circadian Rhythm - physiology
2012
The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDF's established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system.
Journal Article
Drosophila model of myeloproliferative neoplasm reveals a feed-forward loop in the JAK pathway mediated by p38 MAPK signalling
by
Nebreda, Angel R.
,
Bray, Sarah J.
,
Pérez, Lidia
in
Animals
,
Cell cycle
,
Disease Models, Animal
2017
Myeloproliferative neoplasms (MPNs) of the Philadelphia-negative class comprise polycythemia vera, essential thrombocythemia and primary myelofibrosis (PMF). They are associated with aberrant amounts of myeloid lineage cells in the blood, and in the case of overt PMF, with the development of myelofibrosis in the bone marrow and the failure to produce normal blood cells. These diseases are usually caused by gain-of-function mutations in the kinase JAK2. Here we use Drosophila to investigate the consequences of activation of the JAK2 ortholog in hematopoiesis. We have identified the maturing hemocytes in the lymph gland, the major hematopoietic organ in the fly, as the cell population susceptible to induce hypertrophy upon targeted overexpression of JAK. We show that JAK activates a feed-forward loop including the cytokine-like ligand Upd3 and its receptor Domeless, which are required to induce lymph gland hypertrophy. Moreover, we present evidence that p38 MAPK signalling plays a key role in this process by inducing the expression of the ligand Upd3. Interestingly, we also show that forced activation of the p38 MAPK pathway in maturing hemocytes suffices to generate hypertrophic organs and the appearance of melanotic tumours. Our results illustrate a novel pro-tumorigenic cross-talk between the p38 MAPK pathway and JAK signalling in a Drosophila model of MPNs. Based on the shared molecular mechanisms underlying MPNs in flies and humans, the interplay between Drosophila JAK and p38 signalling pathways unravelled in this work might have translational relevance for human MPNs.
Journal Article
Identification of Genes Affecting Wing Patterning Through a Loss-of-Function Mutagenesis Screen and Characterization of med15 Function During Wing Development
by
de Celis, Jose F
,
Terriente-Félix, Ana
,
López-Varea, Ana
in
Animals
,
Apoptosis
,
Drosophila melanogaster - genetics
2010
The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.
Journal Article
Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila
by
Talsma, Aaron D.
,
Miguel-Aliaga, Irene
,
Terriente-Felix, Ana
in
Biological Sciences
,
Neuroscience
2012
The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDF's established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system.
Journal Article
Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models
2023
Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies.
We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays.
We discovered that the Drosophila homolog Cisd accumulates during aging, as well as in Pink1 and parkin mutant flies. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and rescues the defective phenotypes of Pink1/parkin mutants.
Altogether, our studies indicate that Cisd accumulation during aging and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.
Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
by
Terriente-Felix, Ana
,
Whitworth, Alexander J
,
Wilson, Emma L
in
1-Phosphatidylinositol 4-kinase
,
Cell Biology
,
Drosophila
2020
Balanced mitochondrial fission and fusion play an important role in shaping and distributing mitochondria, as well as contributing to mitochondrial homeostasis and adaptation to stress. In particular, mitochondrial fission is required to facilitate degradation of damaged or dysfunctional units via mitophagy. Two Parkinson’s disease factors, PINK1 and Parkin, are considered key mediators of damage-induced mitophagy, and promoting mitochondrial fission is sufficient to suppress the pathological phenotypes in Pink1/parkin mutant Drosophila . We sought additional factors that impinge on mitochondrial dynamics and which may also suppress Pink1/parkin phenotypes. We found that the Drosophila phosphatidylinositol 4-kinase IIIβ homologue, Four wheel drive (Fwd), promotes mitochondrial fission downstream of the pro-fission factor Drp1. Previously described only as male sterile, we identified several new phenotypes in fwd mutants, including locomotor deficits and shortened lifespan, which are accompanied by mitochondrial dysfunction. Finally, we found that fwd overexpression can suppress locomotor deficits and mitochondrial disruption in Pink1/parkin mutants, consistent with its function in promoting mitochondrial fission. Together these results shed light on the complex mechanisms of mitochondrial fission and further underscore the potential of modulating mitochondrial fission/fusion dynamics in the context of neurodegeneration.
Regulation of Human PINK1 ubiquitin kinase by Serine167, Serine228 and Cysteine412 phosphorylation
2023
Loss-of-function mutations in the human PINK1 kinase (hPINK1) are causative of early-onset Parkinson’s disease (PD). Activation of hPINK1 induces phosphorylated ubiquitin to initiate removal of damaged mitochondria by autophagy. Previously we solved the structure of the insect PINK1 orthologue, Tribolium castaneum PINK1, and showed that autophosphorylation of Ser205 was critical for ubiquitin interaction and phosphorylation (Kumar, Tamjar, Waddell et al., 2017). Here we report new findings on the regulation of hPINK1 by phosphorylation. We reconstitute E. coli expressed hPINK1 activity in vitro by direct incorporation of phosphoserine at the equivalent site Serine 228 (pSer228), providing direct evidence for a role for Ser228 phosphorylation in hPINK1 activation. Furthermore, using mass spectrometry, we identify six novel Ser/Thr autophosphorylation sites including regulatory Serine167 phosphorylation (pSer167), which in addition to pSer228 is required for ubiquitin recognition and phosphorylation. Strikingly, we also detect phosphorylation of a conserved Cysteine412 (pCys412) residue in the hPINK1 activation segment. Structural modelling suggests that pCys412 inhibits ubiquitin recognition and we demonstrate that mutation of Cys412 to Ala renders hPINK1 more active towards ubiquitin when expressed in human cells. These results outline new insights into hPINK1 activation by pSer167 and pSer228 and a novel inhibitory mechanism mediated by pCys412. These findings will aid in the development of small molecule activators of hPINK1.