Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Testa, J.R"
Sort by:
The promyelocytic leukemia zinc-finger gene, PLZF, is frequently downregulated in malignant mesothelioma cells and contributes to cell survival
DNA copy number analysis was performed, using single-nucleotide polymorphism mapping arrays, to fine map genomic imbalances in human malignant mesothelioma (MM) cell lines derived from primary tumors. Chromosomal losses accounted for the majority of genomic imbalances. All 22 cell lines examined showed homozygous deletions of 9p21.3, centering at the CDKN2A/ARF and CDKN2B loci. Other commonly underrepresented segments included 1p36, 1p22, 3p21–22, 4q13, 4q34, 11q23, 13q12–13, 14q32, 15q15, 18q12, and 22q12, each observed in 55–90% of cell lines. Focal deletions of 11q23 encompassed the transcriptional repressor gene promyelocytic leukemia zinc finger ( PLZF ), which was validated by analysis of genomic DNA using real-time polymerase chain reaction (PCR). Semi-quantitative RT–PCR and immunoblot analysis revealed that PLZF is greatly downregulated in MM cell lines compared with non-malignant mesothelial cells. Ectopic expression of PLZF in PLZF-deficient MM cells resulted in decreased cell viability, reduced colony formation, as well as increased apoptosis, the latter based on results of various cell death assays and the observation of increased cleavage of caspase 3, PARP, and Mcl-1. These data indicate that deletions of PLZF are a common occurrence in MM and that downregulation of PLZF may contribute to MM pathogenesis by promoting cell survival.
Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization
Previously, a rodent cDNA encoding the third member of the Akt/PKB family of serine/threonine kinases was cloned. We have now cloned the human homolog of this cDNA, and we have used this clone to map the AKT3 gene to human chromosome 1q44 by fluorescence in situ hybridization (FISH). We have also mapped the rodent homologs of AKT3 to rat chromosome 13q24-->q26 and mouse chromosome 1H4-6 by FISH.
Challenging global waste management : bioremediation to detoxify asbestos
As the 21st century uncovers ever-increasing volumes of asbestos and asbestos-contaminated waste, we need a new way to stop ‘grandfather’s problem’ from becoming that of our future generations. The production of inexpensive, mechanically strong, heat resistant building materials containing asbestos has inevitably led to its use in many public and residential buildings globally. It is therefore not surprising that since the asbestos boom in the 1970s, some 30 years later, the true extent of this hidden danger was exposed. Yet, this severely toxic material continues to be produced and used in some countries, and in others the disposal options for historic uses – generally landfill – are at best unwieldy and at worst insecure. We illustrate the global scale of the asbestos problem via three case studies which describe various removal and/or end disposal issues. These case studies from both industrialised and island nations demonstrate the potential for the generation of massive amounts of asbestos contaminated soil. In each case, the final outcome of the project was influenced by factors such as cost and land availability, both increasing issues, worldwide. The reduction in the generation of asbestos containing materials will not absolve us from the necessity of handling and disposal of contaminated land. Waste treatment which relies on physico-chemical processes is expensive and does not contribute to a circular model economy ideal. Although asbestos is a mineral substance, there are naturally occurring biological-mediated processes capable of degradation (such as bioweathering). Therefore, low energy options, such as bioremediation, for the treatment for asbestos contaminated soils are worth exploring. We outline evidence pointing to the ability of microbe and plant communities to remove from asbestos the iron that contributes to its carcinogenicity. Finally, we describe the potential for a novel concept of creating ecosystems over asbestos landfills (‘activated landfills’) that utilize nature’s chelating ability to degrade this toxic product effectively.
Universal Mapping Probes and the Origin of Human Chromosome 3
Universal mapping probes (UMPs) are defined as short segments of human DNA that are useful for physical and genetic mapping in a wide variety of mammals. The most useful UMPs contain a conserved DNA sequence immediately adjoined to a highly polymorphic CA repeat. The conserved region determines physical gene location, whereas the CA repeat facilitates genetic mapping. Both the CA repeat and its neighboring sequence are highly conserved in evolution. This permits molecular, cytogenetic, and genetic mapping of UMPs throughout mammalia. UMPs are significant because they make genetic information cumulative among well-studied species and because they transfer such information from \"map rich\" organisms to those that are \"map poor.\" As a demonstration of the utility of UMPs, comparative maps between human chromosome 3 (HSA3) and the rat genome have been constructed. HSA3 is defined by at least 12 synthenic clusters located on seven different rat chromosomes. These data, together with previous comparative mapping information between human, mouse, and bovine genomes, allow us to propose a distinct evolutionary pathway that connects HSA3 with the chromosomes of rodents, artiodactyls, and primates. The model predicts a parsimonious phylogenetic tree, is readily testable, and will be of considerable use for determining the pathways of mammalian evolution.
Structures and chromosome locations of the human MEF2A gene and a pseudogene MEF2AP
The MEF2 family of transcription factors control the expression of muscle-specific and mitogen-induced genes. Here we describe the isolation and structure of the human MEF2A gene. The protein coding region of MEF2A is divided by 10 introns. The 3' untranslated region (UTR) is 3.7 kb in length, and it contains a region that is highly homologous with a portion of the 3' UTR of Xenopus MEF2A. A partially processed pseudogene (MEF2AP) corresponding to MEF2A was also isolated and characterized. Human MEF2A was mapped by fluorescence in situ hybridization to chromosome 15q26, and MEF2AP was mapped to chromosome 1q24 --> q25.
Chromosome mapping of the mouse Akt2 gene and Akt2 pseudogene
We previously reported the cloning of a murine cDNA encoding the protein-serine/threonine kinase Akt2, and we used this clone to map the Akt2 gene to mouse chromosome (MMU) 7B1 by fluorescence in situ hybridization. We now have cloned and partially sequenced a mouse Akt2 pseudogene. An analysis of two sets of multilocus crosses revealed that the Akt2 gene is closely linked to the Cyp2a locus in proximal MMU7. The Akt2 pseudogene was mapped to proximal MMU11 by both multilocus mapping and fluorescence in situ hybridization.
Genotyping microarray (gene chip) for the ABCR (ABCA4) gene
Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone‐rod dystrophy (CRD), and age‐related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all ∼400 disease‐associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence‐specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease‐associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost‐effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Hum Mutat 22:395–403, 2003. © 2003 Wiley‐Liss, Inc.
Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion
Prostate cancer shows a propensity to form secondary tumours within the bone marrow. Such tumours are the major cause of mortality in this disease. We have developed an in vitro system to study the binding of prostate epithelial cells to bone marrow endothelium (BME) and stroma (BMS). The metastatic prostate cancer cell line, PC3 (derived from a bone metastasis), was seeded onto confluent layers of BME and its binding characteristics compared to human umbilical vein endothelial cells (HUVEC), lung endothelium (Hs888Lu) and BMS. The PC3 cell line showed significantly increased binding to BME ( P < 0.05) compared to endothelium derived from HUVEC and lung or BMS with maximal binding occurring at 1 h. Following pre-incubation with a β1 integrin antibody PC3 binding to BME was inhibited by 64% ( P < 0.001). Antibodies directed against the integrins β4, α2, α4, α5 and the cellular adhesion molecules P-selectin, CD31, VCAM-1 and sialy Lewis X showed no effect on blocking PC3 binding. Primary prostatic epithelial cells from both malignant ( n = 11) and non-malignant tissue ( n = 11) also demonstrated equivalent levels of increased adhesion to BME and BMS compared to HUVEC, peaking at 24 h. Further studies examined the invasive ability of prostate epithelial cells in response to bone marrow endothelium using Matrigel invasion chamber assays. In contrast to the previous results, malignant cells showed an increase (1000 fold) in invasive ability, whilst non-malignant prostate epithelia did not respond. We have shown that both malignant and non-malignant prostate epithelial cells can bind at equivalent levels and preferentially to primary human bone marrow endothelium in comparison to controls. However, only malignant prostate epithelia show increased invasive ability in response to BME. © 2001 Cancer Research Campaign
Monoclonal antibodies against tissue-nonspecific alkaline phosphatase: Report of the ISOBM TD9 Workshop
Nineteen monoclonal antibodies (MAbs) against tissue-nonspecific (liver/bone/kidney) alkaline phosphatase (TNALP) were investigated in the ISOBM TD-9 Workshop. These MAbs were generated with antigens obtained from human bone tissue (n = 9), human osteosarcoma cell lines (SaOS-2 and TPX; n = 7) and human liver tissue (n = 3). The evaluation included the following antigen forms: (a) commercially available preparations of human bone ALP (BALP) and liver ALP (LALP); (b) human BALP isoforms, B/I, B1 and B2; and (c) soluble secreted epitope-tagged recombinant human TNALP (setTNALP) expressed in COS-1, osteosarcoma (SaOS-2) and hepatoma (Huh2) cell lines. In addition, 16 TNALP mutant cDNAs corresponding to a wide spectrum of reported hypophosphatasia mutations were used in an attempt to map specific immunoreactive epitopes on the surface of the TNALP molecule. The TD-9 MAbs were evaluated by immunoradiometric (IRMA) assays, cross-inhibition and different enzyme immunoassay designs. No indications of explicit tissue discriminatory immunoreactivities of the investigated MAbs against TNALP were found. However, certain IRMA combinations of MAbs increased the specificity of BALP measurements. All MAbs bound to the three BALP isoforms B/I, B1 and B2, but none of the investigated MAbs were specific for any of the isoforms. Significant differences were, however, found in immunoreactivity between these isoforms, with cross-reactivities ranging from 21 to 109% between the two major BALP isoforms B1 and B2. Desialylation with neuraminidase significantly increased the MAb affinity for the BALP isoforms B/I, B1 and B2, and also decreased the observed differences in cross-reactivity between these isoforms. We suggest, therefore, that the MAb affinity is dependent on the amount/number of terminal sialic acid residues located at the five putative N-glycosylation sites. Based on the overall results, we present a putative three-dimensional model of the TNALP molecule with positioning of the four major antigenic domains (designated A-D) of the investigated MAbs. The TNALP molecule is depicted as a homodimer, hence most, but not necessarily all, epitopes are displayed twice. The antigenic domains were positioned with the following assumptions: domain A was positioned close to the active site since most of these MAbs interfered with the catalytic activity. Interestingly, both MAbs included in the commercial BALP kits were grouped with domain A. Moreover, 4 of the 5 putative N-glycosylation sites (with terminal sialic acid residues) are located within, or with close proximity to, domain A. Domain B was localized at the top flexible loop (crown domain) of the TNALP molecule. Domain C was clearly defined by the IRMA assay combinations and by site-directed mutants of TNALP to be close to residue E281, which is located near the fourth metal binding site, likely to be occupied by a calcium ion. Domain D was positioned close to residues A115, A162 and E174, but this domain was also close to the GPI anchor site. In conclusion, none of the 19 investigated TD-9 MAbs were entirely specific for BALP or LALP, thus indicating that all MAbs bind mainly to epitopes on the common protein core of BALP and LALP and/or common glycosylated epitopes. However, some MAbs (either single or in combination with other MAbs) work sufficiently well to measure BALP when the assayed samples do not contain elevated levels of LALP.