Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
180 result(s) for "Tetsuya Kodama"
Sort by:
Intranodal delivery of modified docetaxel: Innovative therapeutic method to inhibit tumor cell growth in lymph nodes
Delivery of chemotherapeutic agents into metastatic lymph nodes (LNs) is challenging as they are unevenly distributed in the body. They are difficult to access via traditional systemic routes of drug administration, which produce significant adverse effects and result in low accumulation of drugs into the cancerous LN. To improve the survival rate of patients with LN metastasis, a lymphatic drug delivery system (LDDS) has been developed to target metastatic LN by delivering chemotherapy agents into sentinel LN (SLN) under ultrasound guidance. The LDDS is an advanced method that can be applied in the early stage of the progression of tumor cells in the SLN before tumor mass formation has occurred. Here we investigated the optimal physicochemical ranges of chemotherapeutic agents’ solvents with the aim of increasing treatment efficacy using the LDDS. We found that an appropriate osmotic pressure range for drug administration was 700–3,000 kPa, with a viscosity < 40 mPa⋅s. In these physicochemical ranges, expansion of lymphatic vessels and sinuses, drug retention, and subsequent antitumor effects could be more precisely controlled. Furthermore, the antitumor effects depended on the tumor progression stage in the SLN, the injection rate, and the volumes of administered drugs. We anticipate these optimal ranges to be a starting point for developing more effective drug regimens to treat metastatic LN with the LDDS. Lymph node metastasis targeted LDDS uses a low concentration of chemotherapy agents, resulting in higher treatment outcomes with fewer side effects. We found that an appropriate osmotic pressure range for drug administration was 700–3,000 kPa, with a viscosity < 40 mPa⋅s.
High-frequency ultrasound for microcirculation in metastatic mouse lymph node: contrast-free versus contrast-enhanced imaging
Focal defects are one of the important features for the diagnosis of lymph node (LN) metastasis. In our previous study, an accurate method for detecting contrast agents was proposed. However, conventional B-mode and contrast-enhanced images via ultrasound contrast agents (UCAs) have the limitations of contrast and spatial resolution to visualize the microcirculation, such as focal defects to distinguish between benign and malignant LN. In the present study, we have developed a novel method based on clutter filtering with singular value decomposition (SVD) analysis using time-integrated amplitude envelope (TIAE) in high-frequency 40 MHz ultrasound for high contrast resolution of the microcirculation in LN tissue. A mouse LN was visualized in vivo without and with UCA to compare the contrast enhancement. A metastatic LN model was established with LM8-luc cells of C3H/HeJ- lpr / lpr and MXH54/Mo- lpr / lpr mice. Bioluminescence imaging and pathological observations were also conducted to evaluate tumor growth. It was found that clutter-filtered contrast-enhanced images with UCA could visualize the feature of the microcirculation in the control LN and focal defects in the metastatic LN. Consistent with histological findings of disrupted architecture and cellular heterogeneity, whereas clutter-filtered B-mode images without UCA failed to visualize the vascular circulation. TIAE provided images with high noise resistance, and the calculated vascular area in the LN showed a decreasing trend in the metastatic group compared to the control group. Our framework enables robust visualization and quantification of LN heterogeneity in microcirculation.
A combination of lymphatic drug delivery of anti‐CTLA‐4 antibody and local radiotherapy for solid‐tumor treatment
The combination of radiotherapy and immunotherapy is a promising approach that has been shown in clinical trials to improve significantly survival and response rates compared with monotherapy against solid tumor. Since anti‐CTLA‐4 antibodies block immunosuppressive signals mainly in the lymph nodes (LNs), efficient drug delivery to the lymphatic system is desirable. However, the immune checkpoint inhibitors, especially anti‐CTLA‐4 are currently administered intravenously (i.v.), resulting in limited efficacy in controlling solid tumor and inhibiting metastases, and the method of administration has not been optimized. Here, we show that a combination of local radiotherapy and administration of anti‐CTLA‐4 antibodies using a lymphatic drug delivery system (LDDS) suppresses solid tumor and metastases. We compared the efficacy of LDDS‐based immunotherapy or radioimmunotherapy with i.v. administration in a solid‐tumor model created by subcutaneous inoculation into LN‐swollen mice with osteosarcoma cells. Tumor‐bearing mice were divided into various groups (no treatment, immunotherapy [i.v. or LDDS], radiotherapy, and radioimmunotherapy [i.v. or LDDS]) and were observed for 28 days. Immunotherapy was administered with a cumulative dose of 10 mg/kg of anti‐CTLA‐4 monoclonal antibody, and radiotherapy was administered with a cumulative 8 Gy of fractionated X‐ray irradiation. For immunotherapy alone, LDDS provided slight tumor growth inhibition but did not inhibit distant metastasis. For radioimmunotherapy, however, tumor growth was delayed and distant metastasis was suppressed compared with radiotherapy alone. In particular, the LDDS group achieved a high tumor‐suppressive effect with T cell‐mediated immune activity, indicating the efficacy of LDDS in radioimmunotherapy. This study evaluated the efficacy of lymphatic drug delivery (LDDS) of anti‐CTLA‐4 antibodies in immunotherapy alone or in combination with radiotherapy (radioimmunotherapy). LDDS administration in radioimmunotherapy resulted in higher tumor suppression with T cell‐mediated immune activity compared with intravenous administration, indicating the efficacy of the LDDS.
Drug formulation augments the therapeutic response of carboplatin administered through a lymphatic drug delivery system
Treatment of metastatic lymph nodes (LNs) is challenging due to their unique architecture and biophysical traits. Systemic chemotherapy fails to impede tumor progression in LNs due to poor drug uptake and retention by LNs, resulting in fatal systemic metastasis. To effectively treat LN metastasis, achieving specific and prolonged retention of chemotherapy drugs in the tumor‐draining LNs is essential. The lymphatic drug‐delivery system (LDDS) is an ultrasound‐guided drug‐delivery methodology for administration of drugs to LNs that addresses these requirements. However, early‐stage metastatic LNs have an additional set of drug transport barriers, such as elevated intranodal pressure and viscosity, that negatively impact drug diffusion. In the present study, using formulations of elevated osmotic pressure and viscosity relative to saline, we sought to favorably alter the LN's physical environment and study its impact on pharmacokinetics and consequently the therapeutic efficacy of carboplatin delivered using the LDDS. Our study confirmed the capability of a drug formulation with elevated osmotic pressure and viscosity to alter the architecture of LNs, as it caused notable expansion of the lymphatic sinus. Additionally, the study delineated an optimal range of osmotic pressure and viscosity, centered around 1897 kPa and 11.5 mPa·s, above and below which therapeutic efficacy was found to decline markedly. These findings suggest that formulation osmotic pressure and viscosity are parameters that require critical consideration as they can both hinder and promote tumorigenesis. The facile formulation reported here has wide‐ranging applicability across cancer spectrums and is thus anticipated to be of great clinical benefit. A simple modification to a drug formulation, resulting in the elevation of the formulation's osmotic pressure and viscosity, enhances the administered drug's therapeutic response by improving its pharmacokinetic profile. In particular, administration of a drug formulation of 1897 kPa and 11.5 mPa·s (CP II[L]) using the lymphatic drug delivery system effectively inhibits lymph node metastasis, thereby preventing the onset of fatal systemic metastasis.
Characterizing perfusion defects in metastatic lymph nodes at an early stage using high-frequency ultrasound and micro-CT imaging
A perfusion defect in a metastatic lymph node (LN) can be visualized as a localized area of low contrast on contrast-enhanced CT, MRI or ultrasound images. Hypotheses for perfusion defects include abnormal hemodynamics in neovascular vessels or a decrease in blood flow in pre-existing blood vessels in the parenchyma due to compression by LN tumor growth. However, the mechanisms underlying perfusion defects in LNs during the early stage of LN metastasis have not been investigated. We show that tumor mass formation with very few microvessels was associated with a perfusion defect in a non-enlarged LN at the early stage of LN metastasis in a LN adenopathy mouse (LN size circa 10 mm). We found in a mouse model of LN metastasis, induced using non-keratinizing tumor cells, that during the formation of the perfusion defect in a non-enlarged LN, the number of blood vessels ≤ 50 μm in diameter decreased, while those of > 50 μm in diameter increased. The methods used were contrast-enhanced high-frequency ultrasound and contrast-enhanced micro-CT imaging systems, with a maximum spatial resolution of > 30 μm. Furthermore, we found no tumor angiogenesis or oxygen partial pressure (pO2) changes in the metastatic LN. Our results demonstrate that the perfusion defect appears to be a specific form of tumorigenesis in the LN, which is a vascular-rich organ. We anticipate that a perfusion defect on ultrasound, CT or MRI images will be used as an indicator of a non-enlarged metastatic LN at an early stage.
Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system
Lymph node (LN) metastasis is thought to account for 20‐30% of deaths from head and neck cancer. The lymphatic drug delivery system (LDDS) is a new technology that enables the injection of drugs into a sentinel LN (SLN) during the early stage of tumor metastasis to treat the SLN and secondary metastatic LNs. However, the optimal physicochemical properties of the solvent used to carry the drug have not been determined. Here, we show that the osmotic pressure and viscosity of the solvent influenced the antitumor effect of cisplatin (CDDP) in a mouse model of LN metastasis. Tumor cells were inoculated into the proper axillary LN (PALN), and the LDDS was used to inject CDDP solution into the subiliac LN (SiLN) to treat the tumor cells in the downstream PALN. CDDP dissolved in saline had no therapeutic effects in the PALN after it was injected into the SiLN using the LDDS or into the tail vein (as a control). However, CDDP solution with an osmotic pressure of ~ 1,900 kPa and a viscosity of ~ 12 mPa⋅s suppressed tumor growth in the PALN after it was injected into the SiLN using the LDDS. The high osmotic pressure dilated the lymphatic vessels and sinuses to enhance drug flow in the PALN, and the high viscosity increased the retention of CDDP in the PALN. Our results demonstrate that optimizing the osmotic pressure and viscosity of the solvent can enhance the effects of CDDP, and possibly other anticancer drugs, after administration using the LDDS. The osmotic pressure and viscosity of the solvent influenced the antitumor effect of cisplatin (CDDP) in a mouse model of lymph node (LN) metastasis. CDDP solution with an osmotic pressure, π of ~1,900 kPa and a viscosity, μ of ~12 mPa⋅s suppressed tumor growth in the proper axillary LN (PALN) after it was injected into the subiliac LN (SiLN) using the lymphatic drug delivery system (LDDS). Our results demonstrate that optimizing the osmotic pressure and viscosity of the solvent can enhance the effects of CDDP, and possibly other anticancer drugs, after administration using the LDDS..
Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia
Background Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. Methods To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo- lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. Results Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. Conclusions Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Analysis of tumor vascularization in a mouse model of metastatic lung cancer
Therapies targeting tumor vasculature would improve the treatment of lung metastasis, although the early changes in vascular structure are incompletely understood. Here, we show that obstructive metastatic foci in lung arterioles decrease the pulmonary vascular network. To generate a mouse model of lung metastasis activation, luciferase-expressing tumor cells were inoculated into the subiliac lymph node (SiLN) of an MXH10/Mo- lpr / lpr mouse, and metastatic tumor cells in the lungs were activated by SiLN resection. Activation of metastases was monitored by in vivo bioluminescence imaging. Pulmonary blood vessel characteristics were analyzed using ex vivo micro-computed tomography. The enhanced permeability and retention (EPR) effect in neovasculature after tumor cell activation was evaluated from the accumulation of intravenously injected indocyanine green (ICG) liposomes. Metastatic foci in lung arterioles were investigated histologically. Micro-computed tomography revealed decreases in pulmonary blood vessel length, volume and number of branching nodes during the early stage of metastasis caused by metastatic foci. ICG liposome accumulation by the EPR effect was not detected. Histology identified metastatic foci in lung arterioles. The lack of an EPR effect after the formation of metastatic foci in lung arterioles makes conventional systemic chemotherapy ineffective for lung metastasis. Thus, alternative therapeutic methods of drug delivery are needed.
Evaluation of metastatic niches in distant organs after surgical removal of tumor-bearing lymph nodes
Background Surgical removal of primary tumors can promote the incidence of tumor metastasis. However, molecular mechanisms underlying this process remain unclear. Methods We inoculated tumor cells expressing luciferase gene  into subiliac lymph node (SiLN) of the MXH10/Mo- lpr / lpr mice. The tumor-bearing SiLNs were surgically removed at a certain period of time after inoculation. Results In vivo bioluminescence imaging system and histological staining revealed metastasis in lung, proper axillary lymph node (PALN) and liver. The lung metastasis rate in SiLN removal groups was significantly higher than in the control group using Fisher exact test. Mann-Whitney U-test indicated that the luciferase-positive tumor cells in the lung and liver were significantly higher than in the control groups. The lung samples in SiLN removal groups had strong expression of lysine oxidase (LOX). Moreover, the number of CD11b + cells in the lung and liver in the SiLN removal groups was significantly increased, which was positively correlated with LOX expression level. In addition, the condition of LOX and CD11b in liver was similar to lung. In the SiLN surgical removal groups, the matrix metalloproteinase (MMP)-2 and VEGFA expression in the lung tissues was significantly higher than in the control groups; the collagen fibers per area around the pulmonary vessels was quite significantly lower and negatively correlated with the expression of MMP-2 by Spearman’s analysis. Our data indicated that the reticular fibers were deposited and disordered in the tumor tissues of the lungs in the removal groups, and the reticular fibers per area was higher than in the control groups. The tumor cells in the PALN of control groups were significantly higher than in the SiLN removal groups, and CD169 + and CD11c + cells were also higher than in the SiLN removal groups. Conclusions Altogether, surgical removal of the tumor-bearing lymph node promoted tumor metastasis through changing the niche in lung and liver. Treatment targeting the metastatic niche might be an effective strategy to prevent tumor metastasis, thereby possibly increasing the survival and reducing the incidence of metastasis in cancer patients.
Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model
Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS from local treatment of metastatic LNs to prevention of distant metastases, the combination of treatment with therapies that enhance systemic tumor immune effects is an important therapeutic strategy. Recently, total body irradiation (TBI) has been shown to activate immune responses and alter the tumor microenvironment. Here we show that combination therapy with TBI and LDDS improves the antitumor effect of metastatic LNs and lung metastasis. Tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis into the proper axillary LN (PALN) and lung in a mouse model. TBI was carried out on day 4 after inoculation using a gamma irradiator. Lymphatic drug delivery into the accessory axillary LN was used to treat PALN. In vivo bioluminescence imaging, high‐frequency ultrasound, and histology showed that combination therapy using TBI (total dose 1.0 Gy once) and the LDDS suppressed tumor growth in LNs and lung metastases and was more effective than using LDDS or TBI alone. Quantitative RT‐PCR of spleens after combination therapy revealed increased expression of CD4, CD8, and IL‐12b, indicating an activated immune response. The results show that combination therapy with TBI and LDDS is a method to improve the efficacy of LN metastases and distant metastases therapy and is a promising novel approach to treat cancer patients. Lymphatic drug delivery system (LDDS) targeting early stage lymph node  (LN) metastasis. Middle ‐dose (1.0 Gy) total body irradiation (M‐TBI) was combined with LDDS. Antitumor effects were evaluated using in vivo bioluminescence imaging, high‐frequency ultrasound, histology, and quantitative RT‐PCR. Combination therapy with M‐TBI and LDDS is a promising novel approach to enhance the treatment of micrometastases in early metastatic LNs and distant organs.