Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Tewari, Subhashish"
Sort by:
Investigation of Failure Mechanism of Inclined Coal Pillars: Numerical Modelling and Tensorial Statistical Analysis with Field Validations
2021
Analysis of the failure mechanism of inclined coal pillars is one of the complicated issues. The wide variability of dip angles of inclined coal pillars makes it more complex. The asymmetric stress distribution and the tendency of shearing along the bedding planes make the inclined coal pillars to behave differently from the flat coal pillars. There is a need for in-depth investigation of the failure mechanism for addressing the instability problems of the inclined coal pillars. Most of the literature quantifies only the magnitudes of the mean principal stresses by classical statistics. As the stress is a second-order tensor having six independent components, the classical statistics is not appropriate to calculate the mean and variability of the principal stresses at the onset of failure of the pillars. In this paper, a comprehensive analysis is done to understand the complex failure mechanism of the inclined coal pillar using numerical modelling as well as tensorial statistics and validated the results with field measurement data of failure cases. The failure mechanism is analysed by quantification of the characteristics of the inclined coal pillars by the principal-stress magnitude and its orientation, induced at the time of failure. Since the spatial variability of the magnitudes and orientations of the induced principal stresses exist within the inclined coal pillars, the mean induced principal stresses σ1¯,σ2¯andσ3¯ are used to quantify the stress states within it. The failure stress states within the coal pillars having different dip angles are generated by the calibrated elasto-plastic numerical modelling with the ubiquitous joint model. Several statistical parameters are calculated to quantify the stress-tensor variability and the correlation among the stress-tensor components. It is found that the correlation coefficients among the shear components increase significantly with the increase of the coal pillar dip angle. Therefore, the inclined coal pillars are highly susceptible to shear failure. The magnitudes, as well as orientations of the mean induced principal stresses within the coal pillars obtained through numerical modelling, are quantified by the tensorial as well as classical statistics. It is found that the magnitude of the mean major induced principal stress σ1¯ at the time of failure, i.e. the strength of the pillar decreases with the increase of the dip angles. The validation of the results with the actual stress measurement data shows that all the failed pillar cases are correctly predicted by the tensorial statistical approach whereas the classical statistical approach does not effectively predict the actual failed condition of the pillars. The study would help to characterise the behaviour of the inclined pillars and address the instability issues for safe and efficient mining of inclined coal seams.
Journal Article
Assessment of the Strength of Inclined Coal Pillars through Numerical Modelling based on the Ubiquitous Joint Model
2019
The inclined coal pillars, formed during the underground extraction of the inclined coal seam, are different from the flat coal pillars due to the high strength anisotropy of the inclined bedded rock, and the asymmetrical stress distribution. To ease the manoeuvring of the men and machinery in the inclined coal mine, the pillars are developed along the apparent dip. Thus, the pillars become rhombus-shaped with acute-angled corners which crush rapidly due to the high stress concentration. No suitable formula is found to estimate the strength of the inclined coal pillar that incorporates all these factors. Thus, the use of the available coal pillar strength formulae may endanger the extraction of the inclined coal seams. This study elucidates the procedures to estimate the strength of the inclined coal pillars by the numerical modelling technique. The ubiquitous joint model is used to simulate the shearing characteristics of the inclined strata. The parametric study shows that the strength of the inclined coal pillars decreases with the increase of the dip of the coal seams. It is also obtained that the strength of the pillars decreases with the decrease of the value of the acute angle of the corners. The peak stress distribution and the strain accumulation over the inclined pillars at the time of failure are plotted in three-dimensional graphs which show the asymmetrical characteristics of the inclined coal pillars. The analysis of variance shows that the dip of the coal seams and the acute angles of the corners have a statistically significant effect on the strength of the inclined coal pillars. Based on the results of the simulation, the best fit relation is established by the multivariate non-linear regression technique to estimate the strength of the inclined coal pillars. The coefficient of determination (R2) and the root mean square error of the model are obtained as 0.92 and 0.065, respectively. The validation of the developed model has been carried out by the stable and failed inclined pillar cases of different underground inclined coal mines in India. Comparisons of the safety factors, obtained from the developed model and the flat pillar strength formula, indicate that the flat pillar strength formula overestimates the strength of the inclined coal pillars. The developed model can be used to design the inclined coal pillars for safe extraction of inclined coal seams.
Journal Article
Evaluation of the effect of fault on the stability of underground workings of coal mine through DEM and statistical analysis
2018
The rock mass around an excavation is generally traversed by different geological discontinuities such as faults, folds, slips, joints, etc. Fault is one of the major geological discontinuities which creates lot of difficulties during underground winning of coal. Entire stress regime and ground conditions in the formation are altered in and around the faults. Faults also impose detrimental effects by introducing impurities, including clay and various forms of mineral matter into the coal seams; opening of pathways for the influx of water and gas into the underground workings; displacing the coal seams upward/downwards making the coal seams difficult or sometimes impractical to mine. Appropriate evaluation of the effect of the fault on the stability of the underground workings is a requisite for safe design of the underground mining structures. In this paper, a study has been carried out to assess the effect of the fault on the stability of underground coal mines by numerical simulation with distinct element method (DEM). On the calibrated DEM model, parametric study has been performed by varying the selected parameters, the dip and the friction angles of the fault. The analysis of variance (ANOVA) shows that both the factors have statistically significant effect on the strength of the coal pillar. Similarly, the displacement of the immediate roof and the height of the disturbed strata are evaluated by the DEM modelling and statistical analysis when the fault passes through the middle of the gallery. The results of ANOVA for both cases indicate that the both factors have significant effect on the displacement of the immediate roof and the height of the disturbed strata. It is obtained from the study that the low angle fault causes high instability in the immediate roof. The paper has been supplemented with the field observations where instability in underground roadways of a coal mine in India is caused by the fault. It was observed in VK-7 incline mine of Singareni Collieries Company Limited, India that there was sudden failure of immediate roof of a roadway where a low angle fault crosses the middle of the roadway. The findings of the paper help to understand the behaviour of the coal pillar and the surrounding rock mass in the presence of the fault. The study would also help to take appropriate decisions about the unstable regions of the working safeguarding safety in underground coal mines.
Journal Article
Exploitation of mica deposits at Nellore mica belt, Andhra Pradesh, India
2020
India is the leading producer of sheet mica and a major part of this is exported. Nellore mica belt is the largest mica-producing area covering part of Nellore district in Andhra Pradesh, India. As most of the mines are old and privately operated, they are developed and operated purely based on local experiences. In this article, we highlight the problems associated with the present mica-mining practices in the Nellore mica belt, and scientific approaches that have been adopted for fixing different parameters associated with mica extraction. Based on detailed field study, geo-mechanical data and tested rock properties, extensive numerical modelling is done to suggest the best possible method of mining for safe and sustainable mica extraction from the area.
Journal Article