Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
135
result(s) for
"Thomas, A. G. R."
Sort by:
Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser
by
Poder, K.
,
McKenna, P.
,
Mangles, S. P. D.
in
Acceleration
,
Critical field (superconductivity)
,
Electric fields
2018
The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date, there is no unanimously accepted theoretical solution for ultrahigh intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself—the so-called radiation reaction force. We report here on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultraintense laser (peak intensity of4×1020W/cm2). In their own rest frame, the highest-energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.
Journal Article
Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
by
Harvey, C.
,
Mangles, S. P. D.
,
Duff, M. J.
in
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
,
Acceleration
,
ATOMIC AND MOLECULAR PHYSICS
2018
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γrays), consistent with a quantum description of radiation reaction. The generatedγrays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energyϵcrit>30MeV.
Journal Article
Narrow bandwidth, low-emittance positron beams from a laser-wakefield accelerator
2024
The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing
N
e
+
≥
10
5
positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.
Journal Article
Monoenergetic beams of relativistic electrons from intense laser–plasma interactions
by
Walton, B. R.
,
Hooker, C. J.
,
Divall, E. J.
in
Biological and medical applications
,
Electrons
,
Exact sciences and technology
2004
High-power lasers that fit into a university-scale laboratory
1
can now reach focused intensities of more than 10
19
W cm
-2
at high repetition rates. Such lasers are capable of producing beams of energetic electrons
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
, protons
12
and γ-rays
13
. Relativistic electrons are generated through the breaking
9
,
10
,
14
of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma
15
. However, the electron beams produced from previous laser–plasma experiments have a large energy spread
6
,
7
,
9
,
14
, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser–plasma interactions, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of ‘table-top’ particle accelerators.
Journal Article
Automation and control of laser wakefield accelerators using Bayesian optimization
2020
Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.
Laser wakefield accelerators are compact sources of ultra-relativistic electrons which are highly sensitive to many control parameters. Here the authors present an automated machine learning based method for the efficient multi-dimensional optimization of these plasma-based particle accelerators.
Journal Article