Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,715 result(s) for "Thomas, Daniel Robert"
Sort by:
Like-minded sources on Facebook are prevalent but not polarizing
Many critics raise concerns about the prevalence of ‘echo chambers’ on social media and their potential role in increasing political polarization. However, the lack of available data and the challenges of conducting large-scale field experiments have made it difficult to assess the scope of the problem 1 , 2 . Here we present data from 2020 for the entire population of active adult Facebook users in the USA showing that content from ‘like-minded’ sources constitutes the majority of what people see on the platform, although political information and news represent only a small fraction of these exposures. To evaluate a potential response to concerns about the effects of echo chambers, we conducted a multi-wave field experiment on Facebook among 23,377 users for whom we reduced exposure to content from like-minded sources during the 2020 US presidential election by about one-third. We found that the intervention increased their exposure to content from cross-cutting sources and decreased exposure to uncivil language, but had no measurable effects on eight preregistered attitudinal measures such as affective polarization, ideological extremity, candidate evaluations and belief in false claims. These precisely estimated results suggest that although exposure to content from like-minded sources on social media is common, reducing its prevalence during the 2020 US presidential election did not correspondingly reduce polarization in beliefs or attitudes. A large-scale field intervention experiment on 23,377 US Facebook users during the 2020 presidential election shows that reducing exposure to content from like-minded social media sources has no measurable effect on political polarization or other political attitudes and beliefs.
An Investigation of the Neural Components and Saccade Sequences that Enable Direct Navigation Through Virtual Space
Spatial navigation is a critical behavior for nearly all life forms. The ability to navigate to a destination and to remember how to return to that destination involves numerous brain processes such as perception, attention, memory, learning, proprioception, and distance estimation. The study of spatial navigation, in various organisms and on different sorts of maze-apparatuses, has revealed what is required of the brain and what is required of the environment to enable successful navigation. This dissertation adds to this vast literature by examining the physiological and behavioral components involved in human navigation in a virtual environment. The primary aim of this dissertation is to use the virtual Morris water task (vMWT) to distinguish how eye gaze patterns, frontal-parietal neural oscillations, and navigation path trajectories differ between participants who learn to take direct paths to the hidden escape platform compared to participants that use non-direct strategies to reach the platform. The vMWT is a virtualization of the Morris water task that is used with rats to find a hidden escape platform within a circular pool of water. While the vMWT has been used extensively and demonstrated sufficient translational value, there is still the specific remaining question of what physiological signals correlate with direct navigation in the virtual domain and how these physiological signals change as a function of learning. The final two aims of this dissertation build upon this initial investigation by 1) examining if these difference in learning can be generalized to other mazes or explained by other factors such as sex and motivation, 2) if a manipulation of viewing perspective can impact navigation performance and how this sort of manipulation is represented in the brain. Together these three aims demonstrate how the differences in navigation strategy within the virtual domain co-occur with differences in eye-gaze, neural-oscillations and path trajectory. Specifically, evidence will be provided as to how direct navigators in the vMWT 1) exhibit higher ERP amplitude at FCz upon finding the platform, 2) preferentially gaze at the distal cue closest to the hidden platform during last block of training, 3) utilize a saccade sequence pattern between the pool wall and pool water to calculate distance vector information, 4) have higher NT170 amplitude upon right turns to the reinforced alley of the T-maze, and 5) exhibit different theta and alpha/mu power spectra during artificial changes to viewing perspective.
The world of Elizabeth Inchbald : essays on literature, culture, and theatre in the long eighteenth century
This collection centers on the remarkable life and career of the writer and actor Elizabeth Inchbald (1753–1821), active in Great Britain in the late eighteenth century. Inspired by the example of Inchbald’s biographer, Annibel Jenkins (1918–2013), the contributors explore the broad historical and cultural context around Inchbald’s life and work, with essays ranging from the Restoration to the nineteenth century. Ranging from visual culture, theater history, literary analyses and to historical investigations, the essays not only present a fuller picture of cultural life in Great Britain in the long eighteenth century, but also reflect a range of disciplinary perspectives. The collection concludes with the final scholarly presentation of the late Professor Jenkins, a study of the eighteenth-century English newspaper The World (1753-1756). 
A Companion to Old and Middle English Literature
Reviews This work fills a gap in existing literature by providing a resource that categorizes primary texts in old and middle English literature into sepcific genres...Recommended for academic libraries. Reference & User Services Quarterly This is a knowledgeable and lively companion for students encountering Anglo-Saxon or Middle English literature for the first time in a survey course or even for specialists in a particular medieval area who wish to pursue other genres...Students of medieval literature will want to own and reread this volume; all academic libraries serving upper-division undergraduates and above should purchase it. Choice
British Airways, Boots and BBC among companies hit by cyber security attack
Security researchers said the hackers are expected to use the data to launch so-called “hack and leak” attacks, threatening to release sensitive information unless companies pay substantial sums. The Clop hacking group is known to hunt for vulnerabilities in secure file-transfer software, since companies are often required by law to handle some of their most valuable data with such providers. “All Zellis-owned software is unaffected and there are no associated incidents or compromises to any other part of our IT estate,” said Zellis, adding it had informed the UK Information Commissioner’s Office, the director of public prosecutions and the National Cyber Security Centre, as well as their equivalents in Ireland.
GAMA: towards a physical understanding of galaxy formation
The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7\"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.
Microbial abundance, activity and population genomic profiling with mOTUs2
Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites). Metagenomic analysis based on universal phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) is a useful strategy, especially for microbial species without reference genomes. Here, the authors develop mOTUs2, an updated and functionally extended profiling tool for microbial abundance, activity and population profiling.
Long-term in vivo biocompatibility of single-walled carbon nanotubes
Over the past two decades, measurements of carbon nanotube toxicity and biodistribution have yielded a wide range of results. Properties such as nanotube type (single-walled vs. multi-walled), purity, length, aggregation state, and functionalization, as well as route of administration, greatly affect both the biocompatibility and biodistribution of carbon nanotubes. These differences suggest that generalizable conclusions may be elusive and that studies must be material- and application-specific. Here, we assess the short- and long-term biodistribution and biocompatibility of a single-chirality DNA-encapsulated single-walled carbon nanotube complex upon intravenous administration that was previously shown to function as an in-vivo reporter of endolysosomal lipid accumulation. Regarding biodistribution and fate, we found bulk specificity to the liver and >90% signal attenuation by 14 days in mice. Using near-infrared hyperspectral microscopy to measure single nanotubes, we found low-level, long-term persistence in organs such as the heart, liver, lung, kidney, and spleen. Measurements of histology, animal weight, complete blood count; biomarkers of organ function all suggest short- and long-term biocompatibility. This work suggests that carbon nanotubes can be used as preclinical research tools in-vivo without affecting acute or long-term health.