Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,643 result(s) for "Thomas, Patrick B."
Sort by:
Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines
The bone metastasis-derived PC3 and the lymph node metastasis-derived LNCaP prostate cancer cell lines are widely studied, having been described in thousands of publications over the last four decades. Here, we report short-read whole-genome sequencing (WGS) and de novo assembly of PC3 (ATCC CRL-1435) and LNCaP (clone FGC; ATCC CRL-1740) at ∼70 × coverage. A known homozygous mutation in TP53 and homozygous loss of PTEN were robustly identified in the PC3 cell line, whereas the LNCaP cell line exhibited a larger number of putative inactivating somatic point and indel mutations (and in particular a loss of stop codon events). This study also provides preliminary evidence that loss of one or both copies of the tumor suppressor Capicua (CIC) contributes to primary tumor relapse and metastatic progression, potentially offering a treatment target for castration-resistant prostate cancer (CRPC). Our work provides a resource for genetic, genomic, and biological studies employing two commonly-used prostate cancer cell lines.
Modelling the tumor immune microenvironment for precision immunotherapy
The complexity of the cellular and acellular players within the tumor microenvironment (TME) allows for significant variation in TME constitution and role in anticancer treatment response. Spatial alterations in populations of tumor cells and adjacent non‐malignant cells, including endothelial cells, fibroblasts and tissue‐infiltrating immune cells, often have a major role in determining disease progression and treatment response in cancer. Many current standard systemic antineoplastic treatments target the cancer cells and could be further refined to directly target commonly dysregulated cell populations of the TME. Recent developments in immuno‐oncology and bioengineering have created an attractive potential to model these complexities at the level of the individual patient. These developments, along with the increasing momentum in precision medicine research and application, have catalysed exciting new discoveries in understanding drug–TME interactions, target identification, and improved efficacy of therapies. While rapid progress has been made, there are still many challenges to overcome in the development of accurate in vitro, in vivo and ex vivo models incorporating the cellular interactions that take place in the TME. In this review, we describe how advances in immuno‐oncology and patient‐derived models, such as patient‐derived organoids and explant cultures, have enhanced the landscape of personalised immunotherapy prediction and treatment of solid organ malignancies. We describe and compare different immunological targets and perspectives on two‐dimensional and three‐dimensional modelling approaches that may be used to better rationalise immunotherapy use, ultimately providing a knowledge base for the integration of the autologous TME into these predictive models. In this article, we discuss several clinically significant immune checkpoint markers and review the current in vitro and ex vivo immune co‐culture platforms that have applications for translational precision immunotherapy in solid tumors. The figure was created with Biorender.com.
No effect of unacylated ghrelin administration on subcutaneous PC3 xenograft growth or metabolic parameters in a Rag1-/- mouse model of metabolic dysfunction
Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 μg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.
Insights from engraftable immunodeficient mouse models of hyperinsulinaemia
Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 −/− ) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 −/− and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 −/− mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P  = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P  = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 −/− HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 −/− HFD-fed mice, but not in NOD/SCID mice. In Rag1 −/− HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 −/− mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.
The long non-coding RNA GHSROS reprograms prostate cancer cell lines toward a more aggressive phenotype
It is now appreciated that long non-coding RNAs (lncRNAs) are important players in orchestrating cancer progression. In this study we characterized GHSROS , a human lncRNA gene on the opposite DNA strand (antisense) to the ghrelin receptor gene, in prostate cancer. The lncRNA was upregulated by prostate tumors from different clinical datasets. Transcriptome data revealed that GHSROS alters the expression of cancer-associated genes. Functional analyses in vitro showed that GHSROS mediates tumor growth, migration and survival, and resistance to the cytotoxic drug docetaxel. Increased cellular proliferation of GHSROS -overexpressing PC3, DU145, and LNCaP prostate cancer cell lines in vitro was recapitulated in a subcutaneous xenograft model. Conversely, in vitro antisense oligonucleotide inhibition of the lncRNA reciprocally regulated cell growth and migration, and gene expression. Notably, GHSROS modulates the expression of PPP2R2C , the loss of which may drive androgen receptor pathway-independent prostate tumor progression in a subset of prostate cancers. Collectively, our findings suggest that GHSROS can reprogram prostate cancer cells toward a more aggressive phenotype and that this lncRNA may represent a potential therapeutic target.
The mitochondrial genome of the black-tailed dasyure (Murexia melanurus)
In this study, we report the mitochondrial genome of the black-tailed dasyure (Murexia melanurus) of New Guinea. The circular genome is 17,736 bp in length and has an AT content of 60.5%. Its gene content - 13 protein-coding genes (PCGs), 2 ribosomal (rRNA) genes, 21 transfer RNA (tRNA) genes, a tRNA pseudogene (tRNA Lys ), and a non-coding control region (CR) - and gene arrangement are consistent with previous marsupial mitogenome assemblies.
The mitochondrial genome of the black-tailed dusky antechinus (Antechinus arktos)
In this study, we report the mitochondrial genome of the black-tailed antechinus (Antechinus arktos), a recently-discovered, endangered carnivorous marsupial inhabiting a caldera that straddles the border of Australia's mid-east coast. The circular A. arktos genome is 17,334 bp in length and has an AT content of 63.3%. Its gene content and arrangement are consistent with reported marsupial mitogenome assemblies.
Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer
Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
The long non-coding RNA GHSROS facilitates breast cancer cell migration and orthotopic xenograft tumour growth
Recent evidence suggests that numerous long non-coding RNAs (lncRNAs) are dysregulated in cancer, and have critical roles in tumour development and progression. The present study investigated the ghrelin receptor antisense lncRNA growth hormone secretagogue receptor opposite strand (GHSROS) in breast cancer. Reverse transcription-quantitative polymerase chain reaction revealed that GHSROS expression was significantly upregulated in breast tumour tissues compared with normal breast tissue. Induced overexpression of GHSROS in the MDA-MB-231 breast cancer cell line significantly increased cell migration in vitro, without affecting cell proliferation, a finding similar to our previous study on lung cancer cell lines. Microarray analysis revealed a significant repression of a small cluster of major histocompatibility class II genes and enrichment of immune response pathways; this phenomenon may allow tumour cells to better evade the immune system. Ectopic overexpression of GHSROS in the MDA-MB-231 cell line significantly increased orthotopic xenograft growth in mice, suggesting that in vitro culture does not fully capture the function of this lncRNA. This study demonstrated that GHSROS may serve a relevant role in breast cancer. Further studies are warranted to explore the function and therapeutic potential of this lncRNA in breast cancer progression.
Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines
The molecular mechanisms involved in non-small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, nontumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5′ capped and 3′ polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.