Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
36
result(s) for
"Thomas, Sarah Madison"
Sort by:
Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice
2024
Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3−/−). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3−/−, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.
Journal Article
FGFR4 Is Required for Concentric Growth of Cardiac Myocytes during Physiologic Cardiac Hypertrophy
2024
Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand. To determine whether FGF23/FGFR4 contributes to physiologic cardiac hypertrophy, we studied FGFR4 knockout mice (FGFR4−/−) during late pregnancy. In comparison to virgin littermates, pregnant wild-type and FGFR4−/− mice showed increases in serum FGF23 levels and heart weight; however, the elevation in myocyte area observed in pregnant wild-type mice was abrogated in pregnant FGFR4−/− mice. This outcome was supported by treatments of cultured cardiac myocytes with serum from fed Burmese pythons, another model of physiologic hypertrophy, where the co-treatment with an FGFR4-specific inhibitor abrogated the serum-induced increase in cell area. Interestingly, we found that in pregnant mice, the heart, and not the bone, shows elevated FGF23 expression, and that increases in serum FGF23 are not accompanied by changes in phosphate metabolism. Our study suggests that in physiologic cardiac hypertrophy, the heart produces FGF23 that contributes to hypertrophic growth of cardiac myocytes in a paracrine and FGFR4-dependent manner, and that the kidney does not respond to heart-derived FGF23.
Journal Article
WHO IS RESPONSIBLE? DEVELOPMENT OF A COMMITTEE FOR EXPIRATION MANAGEMENT OF MEDICAL SUPPLIES IN AN AMBULATORY CARE SETTING
by
Regalbuto, April
,
Bousono, Danita
,
Thomas, Madison
in
Ambulatory care
,
Clinics
,
Medical supplies
2024
Efficient management of medical supplies is crucial for ensuring quality patient care and controlling costs within healthcare facilities. It was identified that a comprehensive approach to establishing par levels for medical supplies and implementing a systematic process for monitoring expiration dates was needed after disposal of copious quantities of expired supplies. Supply management prevents the use of expired medical supplies, which could compromise patient safety and regulatory compliance. Ambulatory care clinics span three clinic locations and house an excess of fifty clinic rooms. The potential of ten different disease sites, both medical and surgical, practicing out of these clinical areas happens daily. Some clinics do planned procedures including scopes and internal exams, while others accommodate postoperative surgical issues. Due to the variety of clinics sharing space, the rooms were often overstocked with supplies leading to expired and wasted items. Multiple workflows were attempted for the supply management. A schedule of twice weekly checks with a two-person sign-off on clinic rooms was first attempted. This process quickly became cumbersome, and staff became noncompliant. The next step was to invest in locked supply carts to house all the medical supplies. Evaluation of the project demonstrated the same problems existed within the carts after moving supplies from the rooms to the carts. In response, a team of medical assistants (MAs) and RNs assembled to discuss ideas on management of the supplies and producing a system of checking the carts and preventing overstocking. The team consisted of majority MAs with an RN resource. They developed a workflow in which the carts were checked once a month, and supplies expiring by the end of the month were placed in a separate bag for first use. Supply Carts are currently checked once per month and recorded in a central location. Each cart has a team member assigned, and compliance is measured by our weekly regulatory checks on random carts. The maintenance of carts has been established and has shown improvement in supply expenses, staff satisfaction, survey readiness, and of most importance, patient safety. Through this committee's development, we have removed the risk of using expired items on patients and drastically reduced wasted medical supplies.
Journal Article
Characteristics and outcomes of COVID-19 associated stroke: a UK multicentre case-control study
2021
ObjectiveWe set out to determine which characteristics and outcomes of stroke are associated with COVID-19.MethodsThis case-control study included patients admitted with stroke to 13 hospitals in England and Scotland between 9 March and 5 July 2020. We collected data on 86 strokes (81 ischaemic strokes and 5 intracerebral haemorrhages) in patients with evidence of COVID-19 at the time of stroke onset (cases). They were compared with 1384 strokes (1193 ischaemic strokes and 191 intracerebral haemorrhages) in patients admitted during the same time period who never had evidence of COVID-19 (controls). In addition, the whole group of stroke admissions, including another 37 patients who appeared to have developed COVID-19 after their stroke, were included in two logistic regression analyses examining which features were independently associated with COVID-19 status and with inpatient mortality.ResultsCases with ischaemic stroke were more likely than ischaemic controls to occur in Asians (18.8% vs 6.7%, p<0.0002), were more likely to involve multiple large vessel occlusions (17.9% vs 8.1%, p<0.03), were more severe (median National Institutes of Health Stroke Scale score 8 vs 5, p<0.002), were associated with higher D-dimer levels (p<0.01) and were associated with more severe disability on discharge (median modified Rankin Scale score 4 vs 3, p<0.0001) and inpatient death (19.8% vs 6.9%, p<0.0001). Recurrence of stroke during the patient’s admission was rare in cases and controls (2.3% vs 1.0%, NS).ConclusionsOur data suggest that COVID-19 may be an important modifier of the onset, characteristics and outcome of acute ischaemic stroke.
Journal Article
THE MORNING AFTER CHRISTMAS
The tree had fallen over onto boxes and bags, the floor was all covered with ribbons and tags. With a smelly old driver so fat and so slow, Iknew in a moment it must be \"old Joe.\" His eyes, how they watered, his face, oh-so-scary, his hair like old carpet, his chin was all hairy.
Newspaper Article
Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer
2022
BackgroundNovel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe Parapoxvirus ovis (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer.MethodsThe immunotherapeutic potential of OrfV was tested in the ID8 orthotopic mouse model of end-stage epithelial ovarian carcinoma. Immune cell profiling, impact on secondary lesion development and survival were evaluated in OrfV-treated mice as well as in Batf3 knockout, mice depleted of specific immune cell subsets and in mice where the primary tumor was removed. Finally, we interrogated gene expression datasets from primary human ovarian tumors from the International Cancer Genome Consortium database to determine whether the interplay we observed between natural killer (NK) cells, classical type 1 dendritic cells (cDC1s) and T cells exists and influences outcomes in human ovarian cancer.ResultsOrfV was an effective monotherapy in a murine model of advanced-stage epithelial ovarian cancer. OrfV intervention relied on NK cells, which when depleted abrogated antitumor CD8+ T-cell responses. OrfV therapy was shown to require cDC1s in experiments with BATF3 knockout mice, which do not have mature cDC1s. Furthermore, cDC1s governed antitumor NK and T-cell responses to mediate antitumor efficacy following OrfV. Primary tumor removal, a common treatment option in human patients, was effectively combined with OrfV for optimal therapeutic outcome. Analysis of human RNA sequencing datasets revealed that cDC1s correlate with NK cells in human ovarian cancer and that intratumoral NK cells correlate positively with survival.ConclusionsThe data herein support the translational potential of OrfV as an NK stimulating immunotherapeutic for the treatment of advanced-stage ovarian cancer.
Journal Article
Chemical pancreatectomy in non-human primates ablates the acini and ducts and enhances beta-cell function
by
Raad, Sarah
,
Zhang, Ting
,
Prasadan, Krishna
in
631/1647/245/164
,
631/1647/245/1847
,
631/1647/245/2221
2023
Chronic pancreatitis is a debilitating disease affecting millions worldwide. These patients suffer from bouts of severe pain that are minimally relieved by pain medications and may necessitate major surgeries with high morbidity and mortality. Previously, we demonstrated that “chemical pancreatectomy,” a pancreatic intraductal infusion of dilute acetic acid solution, ablated the exocrine pancreas while preserving the endocrine pancreas. Notably, chemical pancreatectomy resolved chronic inflammation, alleviated allodynia in the cerulein pancreatitis model, and improved glucose homeostasis. Herein, we extensively tested the feasibility of a chemical pancreatectomy in NHPs and validated our previously published pilot study. We did serial computed tomography (CT) scans of the abdomen and pelvis, analyzed dorsal root ganglia, measured serum enzymes, and performed histological and ultrastructural assessments and pancreatic endocrine function assays. Based on serial CT scans, chemical pancreatectomy led to the loss of pancreatic volume. Immunohistochemistry and transmission electron microscopy demonstrated exocrine pancreatic ablation with endocrine islet preservation. Importantly, chemical pancreatectomy did not increase pro-nociceptive markers in harvested dorsal root ganglia. Also, chemical pancreatectomy improved insulin secretion to supranormal levels in vivo and in vitro. Thus, this study may provide a foundation for translating this procedure to patients with chronic pancreatitis or other conditions requiring a pancreatectomy.
Journal Article
Cerebral white matter rarefaction has both neurodegenerative and vascular causes and may primarily be a distal axonopathy
by
Beach, Thomas G
,
Sue, Lucia I
,
Scott, Sarah
in
Alzheimer Disease - diagnostic imaging
,
Alzheimer Disease - pathology
,
Alzheimer's disease
2023
Abstract
Cerebral white matter rarefaction (CWMR) was considered by Binswanger and Alzheimer to be due to cerebral arteriolosclerosis. Renewed attention came with CT and MR brain imaging, and neuropathological studies finding a high rate of CWMR in Alzheimer disease (AD). The relative contributions of cerebrovascular disease and AD to CWMR are still uncertain. In 1181 autopsies by the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), large-format brain sections were used to grade CWMR and determine its vascular and neurodegenerative correlates. Almost all neurodegenerative diseases had more severe CWMR than the normal control group. Multivariable logistic regression models indicated that Braak neurofibrillary stage was the strongest predictor of CWMR, with additional independently significant predictors including age, cortical and diencephalic lacunar and microinfarcts, body mass index, and female sex. It appears that while AD and cerebrovascular pathology may be additive in causing CWMR, both may be solely capable of this. The typical periventricular pattern suggests that CWMR is primarily a distal axonopathy caused by dysfunction of the cell bodies of long-association corticocortical projection neurons. A consequence of these findings is that CWMR should not be viewed simply as “small vessel disease” or as a pathognomonic indicator of vascular cognitive impairment or vascular dementia.
Journal Article
Dietary patterns and associations with BMI in low-income, ethnic minority youth in the USA according to baseline data from four randomised controlled trials
by
Nicastro, Holly L.
,
Sherwood, Nancy E.
,
Ievers-Landis, Carolyn E.
in
Adolescent
,
adults
,
beverages
2021
Few studies have derived data-driven dietary patterns in youth in the USA. This study examined data-driven dietary patterns and their associations with BMI measures in predominantly low-income, racial/ethnic minority US youth. Data were from baseline assessments of the four Childhood Obesity Prevention and Treatment Research (COPTR) Consortium trials: NET-Works (534 2–4-year-olds), GROW (610 3–5-year-olds), GOALS (241 7–11-year-olds) and IMPACT (360 10–13-year-olds). Weight and height were measured. Children/adult proxies completed three 24-h dietary recalls. Dietary patterns were derived for each site from twenty-four food/beverage groups using k-means cluster analysis. Multivariable linear regression models examined associations of dietary patterns with BMI and percentage of the 95th BMI percentile. Healthy (produce and whole grains) and Unhealthy (fried food, savoury snacks and desserts) patterns were found in NET-Works and GROW. GROW additionally had a dairy- and sugar-sweetened beverage-based pattern. GOALS had a similar Healthy pattern and a pattern resembling a traditional Mexican diet. Associations between dietary patterns and BMI were only observed in IMPACT. In IMPACT, youth in the Sandwich (cold cuts, refined grains, cheese and miscellaneous) compared with Mixed (whole grains and desserts) cluster had significantly higher BMI (β = 0·99 (95 % CI 0·01, 1·97)) and percentage of the 95th BMI percentile (β = 4·17 (95 % CI 0·11, 8·24)). Healthy and Unhealthy patterns were the most common dietary patterns in COPTR youth, but diets may differ according to age, race/ethnicity or geographic location. Public health messages focused on healthy dietary substitutions may help youth mimic a dietary pattern associated with lower BMI.
Journal Article
Preliminary Evaluation of Filtration Efficiency and Differential Pressure ASTM F3502 Testing Methods of Non-Medical Masks Using a Face Filtration Mount
2021
Research surrounding the mandated use of non-medical fabric masks is inconsistent and often confusing when compared to the standard N95. A recently published standard from ASTM International and the Centers for Disease Control and Prevention attempts to normalize evaluation procedures. The purpose of this study is to conduct a preliminary evaluation of the new methods for testing filtration efficiency of masks outlined by ASTM International F3502, where results can be directly compared to standards outlined for non-medical fabric masks. Eleven consumer non-medical fabric masks were tested for filtration efficiency and airflow resistance using a face filtration mount in accordance with the newly released ASTM International standard for facial barriers. The mean FE% (SD) ranged from 0.46% (0.44) to 11.80% (2.76) with the 3-layer athletic mesh having the highest performance and the highest deviations. All the masks tested following the procedure failed to meet to minimum FE of 20%; however all masks performed below the minimum upper limits for airflow resistance. Using a non-medical fabric masks as the sole mitigation strategy may not be as effective, as previously reported. With efforts to standardize and regulate the non-medical fabric mask market, this study demonstrates a variety of currently available consumer mask products do not meet the minimum standards nor are these remotely close to the standards of surgical or N95 masks.
Journal Article