Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
50
result(s) for
"Thomas Zeh"
Sort by:
Development of High-Fidelity Automotive LiDAR Sensor Model with Standardized Interfaces
by
Köhler, Michael H.
,
Cichy, Yannik
,
Fink, Maximilian
in
advanced driver-assistance systems
,
Automobile industry
,
automotive LiDAR sensor
2022
This work introduces a process to develop a tool-independent, high-fidelity, ray tracing-based light detection and ranging (LiDAR) model. This virtual LiDAR sensor includes accurate modeling of the scan pattern and a complete signal processing toolchain of a LiDAR sensor. It is developed as a functional mock-up unit (FMU) by using the standardized open simulation interface (OSI) 3.0.2, and functional mock-up interface (FMI) 2.0. Subsequently, it was integrated into two commercial software virtual environment frameworks to demonstrate its exchangeability. Furthermore, the accuracy of the LiDAR sensor model is validated by comparing the simulation and real measurement data on the time domain and on the point cloud level. The validation results show that the mean absolute percentage error (MAPE) of simulated and measured time domain signal amplitude is 1.7%. In addition, the MAPE of the number of points Npoints and mean intensity Imean values received from the virtual and real targets are 8.5% and 9.3%, respectively. To the author’s knowledge, these are the smallest errors reported for the number of received points Npoints and mean intensity Imean values up until now. Moreover, the distance error derror is below the range accuracy of the actual LiDAR sensor, which is 2 cm for this use case. In addition, the proving ground measurement results are compared with the state-of-the-art LiDAR model provided by commercial software and the proposed LiDAR model to measure the presented model fidelity. The results show that the complete signal processing steps and imperfections of real LiDAR sensors need to be considered in the virtual LiDAR to obtain simulation results close to the actual sensor. Such considerable imperfections are optical losses, inherent detector effects, effects generated by the electrical amplification, and noise produced by the sunlight.
Journal Article
A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
by
Michael H. Köhler
,
Martin Jakobi
,
Lukas Haas
in
Accuracy
,
advanced driver-assistance system
,
Analysis
2023
In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error derror of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain.
Journal Article
Velocity Estimation from LiDAR Sensors Motion Distortion Effect
by
Koch, Alexander W.
,
Jakobi, Martin
,
Zeh, Thomas
in
advanced driver assistance systems
,
Building automation
,
deep learning
2023
Many modern automated vehicle sensor systems use light detection and ranging (LiDAR) sensors. The prevailing technology is scanning LiDAR, where a collimated laser beam illuminates objects sequentially point-by-point to capture 3D range data. In current systems, the point clouds from the LiDAR sensors are mainly used for object detection. To estimate the velocity of an object of interest (OoI) in the point cloud, the tracking of the object or sensor data fusion is needed. Scanning LiDAR sensors show the motion distortion effect, which occurs when objects have a relative velocity to the sensor. Often, this effect is filtered, by using sensor data fusion, to use an undistorted point cloud for object detection. In this study, we developed a method using an artificial neural network to estimate an object’s velocity and direction of motion in the sensor’s field of view (FoV) based on the motion distortion effect without any sensor data fusion. This network was trained and evaluated with a synthetic dataset featuring the motion distortion effect. With the method presented in this paper, one can estimate the velocity and direction of an OoI that moves independently from the sensor from a single point cloud using only one single sensor. The method achieves a root mean squared error (RMSE) of 0.1187 m s−1 and a two-sigma confidence interval of [−0.0008 m s−1, 0.0017 m s−1] for the axis-wise estimation of an object’s relative velocity, and an RMSE of 0.0815 m s−1 and a two-sigma confidence interval of [0.0138 m s−1, 0.0170 m s−1] for the estimation of the resultant velocity. The extracted velocity information (4D-LiDAR) is available for motion prediction and object tracking and can lead to more reliable velocity data due to more redundancy for sensor data fusion.
Journal Article
LiDAR Sensor Parameter Augmentation and Data-Driven Influence Analysis on Deep-Learning-Based People Detection
2025
Light detection and ranging (LiDAR) sensor technology for people detection offers a significant advantage in data protection. However, to design these systems cost- and energy-efficiently, the relationship between the measurement data and final object detection output with deep neural networks (DNNs) has to be elaborated. Therefore, this paper presents augmentation methods to analyze the influence of the distance, resolution, noise, and shading parameters of a LiDAR sensor in real point clouds for people detection. Furthermore, their influence on object detection using DNNs was investigated. A significant reduction in the quality requirements for the point clouds was possible for the measurement setup with only minor degradation on the object list level. The DNNs PointVoxel-Region-based Convolutional Neural Network (PV-RCNN) and Sparsely Embedded Convolutional Detection (SECOND) both only show a reduction in object detection of less than 5% with a reduced resolution of up to 32 factors, for an increase in distance of 4 factors, and with a Gaussian noise up to μ=0 and σ=0.07. In addition, both networks require an unshaded height of approx. 0.5 m from a detected person’s head downwards to ensure good people detection performance without special training for these cases. The results obtained, such as shadowing information, are transferred to a software program to determine the minimum number of sensors and their orientation based on the mounting height of the sensor, the sensor parameters, and the ground area under consideration, both for detection at the point cloud level and object detection level.
Journal Article
In-Flight Aircraft Trajectory Optimization within Corridors Defined by Ensemble Weather Forecasts
by
Zeh, Thomas
,
Rosenow, Judith
,
Fricke, Hartmut
in
Air traffic control
,
Air traffic management
,
Aircraft
2020
Today, each flight is filed as a static route not later than one hour before departure. From there on, changes of the lateral route initiated by the pilot are only possible with air traffic control clearance and in the minority. Thus, the initially optimized trajectory of the flight plan is flown, although the optimization may already be based upon outdated weather data at take-off. Global weather data as those modeled by the Global Forecast System do, however, contain hints on forecast uncertainties itself, which is quantified by considering so-called ensemble forecast data. In this study, the variability in these weather parameter uncertainties is analyzed, before the trajectory optimization model TOMATO is applied to single trajectories considering the previously quantified uncertainties. TOMATO generates, based on the set of input data as provided by the ensembles, a 3D corridor encasing all resulting optimized trajectories. Assuming that this corridor is filed in addition to the initial flight plan, the optimum trajectory can be updated even during flight, as soon as updated weather forecasts are available. In return and as a compromise, flights would have to stay within the corridor to provide planning stability for Air Traffic Management compared to full free in-flight optimization. Although the corridor restricts the re-optimized trajectory, fuel savings of up to 1.1%, compared to the initially filed flight, could be shown.
Journal Article
Performance Evaluation of MEMS-Based Automotive LiDAR Sensor and Its Simulation Model as per ASTM E3125-17 Standard
by
Ludwig Kastner
,
Michael H. Köhler
,
Martin Jakobi
in
advanced driver-assistance system
,
Article ; micro-electro-mechanical systems ; automotive LiDAR sensor ; ASTM E3125-17 standard ; advanced driver-assistance system ; open simulation interface ; functional mock-up interface ; functional mock-up unit ; point-to-point distance tests ; user-selected tests ; proving ground ; PointPillars
,
ASTM E3125-17 standard
2023
Measurement performance evaluation of real and virtual automotive light detection and ranging (LiDAR) sensors is an active area of research. However, no commonly accepted automotive standards, metrics, or criteria exist to evaluate their measurement performance. ASTM International released the ASTM E3125-17 standard for the operational performance evaluation of 3D imaging systems commonly referred to as terrestrial laser scanners (TLS). This standard defines the specifications and static test procedures to evaluate the 3D imaging and point-to-point distance measurement performance of TLS. In this work, we have assessed the 3D imaging and point-to-point distance estimation performance of a commercial micro-electro-mechanical system (MEMS)-based automotive LiDAR sensor and its simulation model according to the test procedures defined in this standard. The static tests were performed in a laboratory environment. In addition, a subset of static tests was also performed at the proving ground in natural environmental conditions to determine the 3D imaging and point-to-point distance measurement performance of the real LiDAR sensor. In addition, real scenarios and environmental conditions were replicated in the virtual environment of a commercial software to verify the LiDAR model’s working performance. The evaluation results show that the LiDAR sensor and its simulation model under analysis pass all the tests specified in the ASTM E3125-17 standard. This standard helps to understand whether sensor measurement errors are due to internal or external influences. We have also shown that the 3D imaging and point-to-point distance estimation performance of LiDAR sensors significantly impacts the working performance of the object recognition algorithm. That is why this standard can be beneficial in validating automotive real and virtual LiDAR sensors, at least in the early stage of development. Furthermore, the simulation and real measurements show good agreement on the point cloud and object recognition levels.
Journal Article
Risk-Aware UAV Trajectory Optimization Using Open Urban GIS Data and Target Level of Safety Constraints
2025
Integrating Unmanned Aerial Vehicles (UAVs) into urban airspace requires a risk-aware approach to strategic flight planning and trajectory optimization, particularly for beyond-visual-line-of-sight operations. Existing regulatory frameworks impose strict restrictions and lack dynamic, trajectory-based risk assessments. This study presents a methodology to compute efficient UAV flight paths that comply with a predefined Target Level of Safety (TLS) for ground risk. An A* algorithm with an adaptive, risk-weighted cost function optimizes trajectories by balancing flight efficiency and ground risk exposure. The risk model incorporates key urban factors, including population exposure, road-traffic density and flow, sheltering effects, UAV-specific parameters, and wind conditions. The approach is validated through a large-scale simulation study using synthetic urban environments, systematically analyzing TLS compliance and the impact of UAV parameters on optimal trajectories. In a real-world case study using open urban GIS data, the method achieved a 72.2% reduction in induced ground risk compared to the direct path, while increasing the detour factor only to 1.06 and maintaining full TLS compliance, demonstrating its practical relevance for strategic, risk-aware UAV flight planning.
Journal Article
Optimal UAV Hangar Locations for Emergency Services Considering Restricted Areas
by
Zeh, Thomas
,
Braßel, Hannes
,
Fricke, Hartmut
in
Aircraft
,
Algorithms
,
Assistance in emergencies
2023
With unmanned aerial vehicle(s) (UAV), swift responses to urgent needs (such as search and rescue missions or medical deliveries) can be realized. Simultaneously, legislators are establishing so-called geographical zones, which restrict UAV operations to mitigate air and ground risks to third parties. These geographical zones serve particular safety interests but they may also hinder the efficient usage of UAVs in time-critical missions with range-limiting battery capacities. In this study, we address a facility location problem for up to two UAV hangars and combine it with a routing problem of a standard UAV mission to consider geographical zones as restricted areas, battery constraints, and the impact of wind to increase the robustness of the solution. To this end, water rescue missions are used exemplary, for which positive and negative location factors for UAV hangars and areas of increased drowning risk as demand points are derived from open-source georeferenced data. Optimum UAV mission trajectories are computed with an A* algorithm, considering five different restriction scenarios. As this pathfinding is very time-consuming, binary occupancy grids and image-processing algorithms accelerate the computation by identifying either entirely inaccessible or restriction-free connections beforehand. For the optimum UAV hangar locations, we maximize accessibility while minimizing the service times to the hotspots, resulting in a decrease from the average service time of 570.4 s for all facility candidates to 351.1 s for one and 287.2 s for two optimum UAV hangar locations.
Journal Article
Interdependent Uncertainty Handling in Trajectory Prediction
by
Zeh, Thomas
,
Rosenow, Judith
,
Fricke, Hartmut
in
actual take-off mass
,
Air traffic management
,
Aircraft
2019
The concept of 4D trajectory management relies on the prediction of aircraft trajectories in time and space. Due to changes in atmospheric conditions and complexity of the air traffic itself, the reliable prediction of system states is an ongoing challenge. The emerging uncertainties have to be modeled properly and considered in decision support tools for efficient air traffic flow management. Therefore, the subjacent causes for uncertainties, their effects on the aircraft trajectory and their dependencies to each other must be understood in detail. Besides the atmospheric conditions as the main external cause, the aircraft itself induces uncertainties to its trajectory. In this study, a cause-and-effect model is introduced, which deals with multiple interdependent uncertainties with different stochastic behavior and their impact on trajectory prediction. The approach is applied to typical uncertainties in trajectory prediction, such as the actual take-off mass, non-constant true air speeds, and uncertain weather conditions. The continuous climb profiles of those disturbed trajectories are successfully predicted. In general, our approach is applicable to all sources of quantifiable interdependent uncertainties. Therewith, ground-based trajectory prediction can be improved and a successful implementation of trajectory-based operations in the European air traffic system can be advanced.
Journal Article
Traffic Flow Funnels Based on Aircraft Performance for Optimized Departure Procedures
2022
Aircraft departures often follow standardized and restrictive routes intended to guarantee a safe transition to the en-route network. Since the procedures must take the flight performance of many aircraft types into account, they represent a compromise between numerous optima and must be consistent with noise abatement strategies. This paper investigates the concept of departure funnels, in which flights can adopt their optimal profile within a procedural space based on actual flight performance to replace standard routes. For this, an algorithm based on DBSCAN identifies typical traffic flow funnels for a set of radar tracks as reference and individually optimized flight trajectories as preferred funnels. For the latter, an innovative 3D pathfinding grid is developed, which expands dynamically using the specific flight performance of the aircraft type and enables evaluation of operating costs due to wind and fuel consumption. From the clustered traffic flows, a funnel starting at the runway is determined based on the variance of the flight profiles along their mean trajectory. This funnel provides a restricted space for individual trajectory optimization for the day of operation. The procedure is applied using the example of Munich Airport, where the funnel size and the associated fuel-saving potential are determined. The results indicate an average fuel-saving potential of 0.4% with respect to the trip fuel.
Journal Article