Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14,481 result(s) for "Thompson, Michael T"
Sort by:
Nonlinear buckling behaviour of spherical shells: barriers and symmetry-breaking dimples
The nonlinear axisymmetric post-buckling behaviour of perfect, thin, elastic spherical shells subject to external pressure and their asymmetric bifurcations are characterized, providing results for a structure/loading combination with an exceptionally nonlinear buckling response. Immediately after the onset of buckling, the buckling mode localizes into a dimple at the poles. The relations among the pressure, the dimple amplitude and the change in volume of the shell are determined over a large range of pole deflections. These results allow accurate evaluation of criteria such as the Maxwell condition for which the energies in the unbuckled and buckled states are the same and evaluation of the influences of pressure versus volume-controlled loadings. Non-axisymmetric bifurcation from the axisymmetric state, which occurs deep into the post-buckling regime in the form of multi-lobed dimples, is also established and discussed. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’
Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics
In a recent paper we examined a model of an arch bridge with viscous damping subjected to a sinusoidally varying central load. We showed how this yields a useful archetypal oscillator which can be used to study the transition from smooth to discontinuous dynamics as a parameter, α, tends to zero. Decreasing this smoothness parameter (a non-dimensional measure of the span of the arch) changes the smooth load-deflection curve associated with snap-buckling into a discontinuous sawtooth. The smooth snap-buckling curve is not amenable to closed-form theoretical analysis, so we here introduce a piecewise linearization that correctly fits the sawtooth in the limit at α=0. Using a Hamiltonian formulation of this linearization, we derive an analytical expression for the unperturbed homoclinic orbit, and make a Melnikov analysis to detect the homoclinic tangling under the perturbation of damping and driving. Finally, a semi-analytical method is used to examine the full nonlinear dynamics of the perturbed piecewise linear system. A chaotic attractor located at α=0.2 compares extremely well with that exhibited by the original arch model: the topological structures are the same, and Lyapunov exponents (and dimensions) are in good agreement.
Assessing the Impact of a Mountain Pine Beetle Infestation on Stand Structure of Lodgepole Pine Forests in Colorado Using the Forest Inventory and Analysis Annual Forest Inventory
The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects of the beetle epidemic on the numbers and distribution of lodgepole pines (Pinus contorta) in Colorado before, during, and after the infestation. Mortality of lodgepole pine peaked around 2007, averaging 38 million trees annually. The structure of existing lodgepole pine forests underwent a significant change after the beetle epidemic. The proportion of large-diameter live lodgepole pines dropped from an average of 37% over the years spanning 2003-2005 period to an average of 25% over the years spanning 2010-2012.
Introduction. Progress in Earth science and climate studies
In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc. A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.
Introduction. Progress in astronomy: from gravitational waves to space weather
This brief paper introduces and reviews the 'visions of the future' articles prepared by leading young scientists throughout the world for the first of two Christmas 2008 Triennial issues of Phil. Trans. R. Soc. A, devoted, respectively, to astronomy and Earth science. Contributions in astronomy include the very topical gamma-ray bursts, new ideas on stellar collapse and the unusual atmospheres of synchronized planets orbiting nearby stars.
Single-molecule magnetic tweezer tests on DNA: bounds on topoisomerase relaxation
Biomedical researchers regularly stretch and twist single DNA molecules in magnetic tweezer experiments. By making the molecule writhe into a plectoneme (ply) and plotting its load-extension curves, key DNA parameters, such as effective radius, can be estimated. Adding untangling enzymes (topoisomerases) to the DNA's environment, their individual cuts are detected as jumps in extension. Sufficient information is now known about the topoisomerases for us to make good idealizations about their kinematics and mechanics. The novelty of this paper is to study their actions in the context of accurate ply solutions from the theory of elastic rods. To do this, we define an extended rod-plus-tension system that allows us to determine the stored energies from areas in the conventional link versus writhe plane. After a cut, the molecule relaxes dynamically to a new equilibrium state, and often there will be two or more alternative stable configurations onto which it might settle. Knowing the energy levels allows us to identify which states can and cannot be reached over the unstable mountain passes, and which of the accessible states offer the greatest energy relaxation. Strict energy bounds on behaviour are established. This knowledge has medical value because topoisomerase inhibitors, lethal for cells, are used as antibiotics and in chemotherapy for cancer.
James Clerk Maxwell 150 years on
This paper is the preface to a special Issue of Phil. Trans. R. Soc. A reporting selected proceedings of the international conference marking the 150th anniversary of James Clerk Maxwell's professorial debut at Marischal College, Aberdeen. Following an introduction to Marischal College, a brief historical note summarizes Maxwell's life prior to his entering the college as professor of natural philosophy. The preface provides a short summary of the event and overviews the contributed papers devoted to subjects covering a wide range of Maxwell's research interests and their modern developments. The mixture of review and research papers reflects both the fundamental importance and the diverse applicability of Maxwell's works in electromagnetics, colour science, dynamics and kinetics. Acknowledgements are given to the individuals and bodies who made the conference the success that it was.
Future perspectives in astronomy and the earth sciences
This article is an overview of the contributions to the Triennial Issue of Phil. Trans. R. Soc. A published in December, 2005, and also plays the role of a Preface. Devoted to the work of young scientists, the issue covers the fields of astronomy and earth science.
Nonlinear dynamics of spherical shells buckling under step pressure
Dynamic buckling is addressed for complete elastic spherical shells subject to a rapidly applied step in external pressure. Insights from the perspective of nonlinear dynamics reveal essential mathematical features of the buckling phenomena. To capture the strong buckling imperfection-sensitivity, initial geometric imperfections in the form of an axisymmetric dimple at each pole are introduced. Dynamic buckling under the step pressure is related to the quasi-static buckling pressure. Both loadings produce catastrophic collapse of the shell for conditions in which the pressure is prescribed. Damping plays an important role in dynamic buckling because of the time-dependent nonlinear interaction among modes, particularly the interaction between the spherically symmetric ‘breathing’ mode and the buckling mode. In general, there is not a unique step pressure threshold separating responses associated with buckling from those that do not buckle. Instead, there exists a cascade of buckling thresholds, dependent on the damping and level of imperfection, separating pressures for which buckling occurs from those for which it does not occur. For shells with small and moderately small imperfections, the dynamic step buckling pressure can be substantially below the quasi-static buckling pressure.