Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
48 result(s) for "Thornhill, Kenneth L."
Sort by:
Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ
Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA–NIER KORUS-AQ (Korea–United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ∼1–3 µg sm−3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ∼140 µgsm-3ppmv-1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70 µgsm-3ppmv-1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 µg sm−3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11 % on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9 % of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA/ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA∕ΔCO.
A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry
Single-particle mass spectrometry (SPMS) instruments characterize the composition of individual aerosol particles in real time. Their fundamental ability to differentiate the externally mixed particle types that constitute the atmospheric aerosol population enables a unique perspective into sources and transformation. However, quantitative measurements by SPMS systems are inherently problematic. We introduce a new technique that combines collocated measurements of aerosol composition by SPMS and size-resolved absolute particle concentrations on aircraft platforms. Quantitative number, surface area, volume, and mass concentrations are derived for climate-relevant particle types such as mineral dust, sea salt, and biomass burning smoke. Additionally, relative ion signals are calibrated to derive mass concentrations of internally mixed sulfate and organic material that are distributed across multiple particle types. The NOAA Particle Analysis by Laser Mass Spectrometry (PALMS) instrument measures size-resolved aerosol chemical composition from aircraft. We describe the identification and quantification of nine major atmospheric particle classes, including sulfate–organic–nitrate mixtures, biomass burning, elemental carbon, sea salt, mineral dust, meteoric material, alkali salts, heavy fuel oil combustion, and a remainder class. Classes can be sub-divided as necessary based on chemical heterogeneity, accumulated secondary material during aging, or other atmospheric processing. Concentrations are derived for sizes that encompass the accumulation and coarse size modes. A statistical error analysis indicates that particle class concentrations can be determined within a few minutes for abundances above ∼10 ng m−3. Rare particle types require longer sampling times. We explore the instrumentation requirements and the limitations of the method for airborne measurements. Reducing the size resolution of the particle data increases time resolution with only a modest increase in uncertainty. The principal limiting factor to fast time response concentration measurements is statistically relevant sampling across the size range of interest, in particular, sizes D < 0.2 µm for accumulation-mode studies and D > 2 µm for coarse-mode analysis. Performance is compared to other airborne and ground-based composition measurements, and examples of atmospheric mineral dust concentrations are given. The wealth of information afforded by composition-resolved size distributions for all major aerosol types represents a new and powerful tool to characterize atmospheric aerosol properties in a quantitative fashion.
Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index
We evaluate the sensitivity of the size calibrations of two commercially available, high-resolution optical particle sizers to changes in aerosol composition and complex refractive index (RI). The Droplet Measurement Technologies Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and the TSI, Inc. Laser Aerosol Spectrometer (LAS) are two commonly used instruments for measuring the portion of the aerosol size distribution with diameters larger than nominally 60–90 nm. Both instruments illuminate particles with a laser and relate the single-particle light scattering intensity and count rate measured over a wide range of angles to the size-dependent particle concentration. While the optical block geometry and flow system are similar for each instrument, a significant difference between the two models is the laser wavelength (1054 nm for the UHSAS and 633 nm for the LAS) and intensity (about 100 times higher for the UHSAS), which may affect the way each instrument sizes non-spherical or absorbing aerosols. Here, we challenge the UHSAS and LAS with laboratory-generated, mobility-size-classified aerosols of known chemical composition to quantify changes in the optical size response relative to that of ammonium sulfate (RI of 1.52+0i at 532 nm) and NIST-traceable polystyrene latex spheres (PSLs with RI of 1.59+0i at 589 nm). Aerosol inorganic salt species are chosen to cover the real refractive index range of 1.32 to 1.78, while chosen light-absorbing carbonaceous aerosols include fullerene soot, nigrosine dye, humic acid, and fulvic acid standards. The instrument response is generally in good agreement with the electrical mobility diameter. However, large undersizing deviations are observed for the low-refractive-index fluoride salts and the strongly absorbing nigrosine dye and fullerene soot particles. Polydisperse size distributions for both fresh and aged wildfire smoke aerosols from the recent Fire Influence on Regional to Global Environments Experiment and Air Quality (FIREX-AQ) and the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) airborne campaigns show good agreement between both optical sizers and contemporaneous electrical mobility sizing and particle time-of-flight mass spectrometric measurements. We assess the instrument uncertainties by interpolating the laboratory response curves using previously reported RIs and size distributions for multiple aerosol type classifications. These results suggest that, while the optical sizers may underperform for strongly absorbing laboratory compounds and fresh tailpipe emissions measurements, sampling aerosols within the atmospherically relevant range of refractive indices are likely to be sized to better than ±10 %–20 % uncertainty over the submicron aerosol size range when using instruments calibrated with ammonium sulfate.
Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign
Although the characteristics of biomass burning events and the ambient ecosystem determine emitted smoke composition, the conditions that modulate the partitioning of black carbon (BC) and brown carbon (BrC) formation are not well understood, nor are the spatial or temporal frequency of factors driving smoke particle evolution, such as hydration, coagulation, and oxidation, all of which impact smoke radiative forcing. In situ data from surface observation sites and aircraft field campaigns offer deep insight into the optical, chemical, and microphysical traits of biomass burning (BB) smoke aerosols, such as single scattering albedo (SSA) and size distribution, but cannot by themselves provide robust statistical characterization of both emitted and evolved particles. Data from the NASA Earth Observing System’s Multi-Angle Imaging SpectroRadiometer (MISR) instrument can provide at least a partial picture of BB particle properties and their evolution downwind, once properly validated. Here we use in situ data from the joint NOAA/NASA 2019 Fire Influence on Regional to Global Environments Experiment-Air Quality (FIREX-AQ) field campaign to assess the strengths and limitations of MISR-derived constraints on particle size, shape, light-absorption, and its spectral slope, as well as plume height and associated wind vectors. Based on the satellite observations, we also offer inferences about aging mechanisms effecting downwind particle evolution, such as gravitational settling, oxidation, secondary particle formation, and the combination of particle aggregation and condensational growth. This work builds upon our previous study, adding confidence to our interpretation of the remote-sensing data based on an expanded suite of in situ measurements for validation. The satellite and in situ measurements offer similar characterizations of particle property evolution as a function of smoke age for the 06 August Williams Flats Fire, and most of the key differences in particle size and absorption can be attributed to differences in sampling and changes in the plume geometry between sampling times. Whereas the aircraft data provide validation for the MISR retrievals, the satellite data offer a spatially continuous mapping of particle properties over the plume, which helps identify trends in particle property downwind evolution that are ambiguous in the sparsely sampled aircraft transects. The MISR data record is more than two decades long, offering future opportunities to study regional wildfire plume behavior statistically, where aircraft data are limited or entirely lacking.
Intercomparison of Aerosol Volume Size Distributions Derived from AERONET Ground-Based Remote Sensing and LARGE in Situ Aircraft Profiles During the 2011–2014 DRAGON and DISCOVER-AQ Experiments
Aerosol volume size distribution (VSD) retrievals from the Aerosol Robotic Network (AERONET) aerosol monitoring network were obtained during multiple DRAGON (Distributed Regional Aerosol Gridded Observational Network) campaigns conducted in Maryland, California, Texas and Colorado from 2011 to 2014. These VSD retrievals from the field campaigns were used to make comparisons with near-simultaneous in situ samples from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team as part of four campaigns comprising the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. For coincident (1 h) measurements there were a total of 91 profile-averaged fine-mode size distributions acquired with the LARGE ultra-high sensitivity aerosol spectrometer (UHSAS) instrument matched to 153 AERONET size distributions retrieved from almucantars at 22 different ground sites. These volume size distributions were characterized by two fine-mode parameters, the radius of peak concentration (rpeak_conc) and the VSD fine-mode width (widthpeak_conc). The AERONET retrievals of these VSD fine-mode parameters, derived from ground-based almucantar sun photometer data, represent ambient humidity values while the LARGE aircraft spiral profile retrievals provide dried aerosol (relative humidity; RH< 20 %) values. For the combined multiple campaign dataset, the average difference in rpeak_conc was 0:0330:035 μm (ambient AERONET values were 15.8% larger than dried LARGE values), and the average difference in widthpeak_conc was 0:0420:039 μm (AERONET values were 25.7% larger). For a subset of aircraft data, the LARGE data were adjusted to account for ambient humidification. For these cases, the AERONET–LARGE average differences were smaller, with rpeak_conc differing by 0:0110:019 μm (AERONET values were 5.2% larger) and widthpeak_conc average differences equal to 0:0300:037 μm (AERONET values were 15.8% larger).
Biofuel blending reduces particle emissions from aircraft engines at cruise conditions
Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate1. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC‐8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Marine boundary layer clouds play a critical role in Earth's energy balance. Their microphysical and radiative properties are highly impacted by ambient aerosols and dynamic forcings. In this study, we evaluate the representation of these clouds and related aerosol–cloud interaction processes in the single-column version of the E3SM climate model (SCM) against field measurements collected during the NASA ACTIVATE campaign over the western North Atlantic, as well as intercompare results with high-resolution process level models. We show that E3SM SCM reproduces the macrophysical properties of post-frontal boundary layer clouds in a cold-air outbreak (CAO) case well. However, it generates fewer but larger cloud droplets compared to aircraft measurements. Further sensitivity tests show that the underestimation of both aerosol number concentration and vertical velocity variance contributes to this bias. Aerosol–cloud interactions are examined by perturbing prescribed aerosol properties in E3SM SCM with fixed dynamics. Higher aerosol number concentration or hygroscopicity leads to more numerous but smaller cloud droplets, resulting in a stronger cooling via shortwave cloud forcing. This apparent Twomey effect is consistent with prior climate model studies. The cloud liquid water path shows a weakly positive relation with cloud droplet number concentration due to precipitation suppression. This weak aerosol effect on cloud macrophysics may be attributed to the dominant impact of strong dynamical forcing associated with the CAO. Our findings indicate that the SCM framework is a key tool to bridge the gap between climate models, process level models, and field observations to facilitate process level understanding.
Overview and Statistical Analysis of Boundary Layer Clouds and Precipitation Over the Western North Atlantic Ocean
Due to their fast evolution and large natural variability in macro- and microphysical properties, the accurate representation of boundary layer clouds in current climate models remains a challenge. One of the regions with large intermodel spread in the Coupled Model Intercomparison Project Phase 6 ensemble is the western North Atlantic Ocean. Here, statistically representative in situ measurements can help to develop and constrain the parameterization of clouds in global models. To this end, we performed comprehensive measurements of boundary layer clouds, aerosol, trace gases, and radiation in the western North Atlantic Ocean during the NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) mission. In total, 174 research flights with 574 flight hours for cloud and precipitation measurements were performed with the HU-25 Falcon during three winter (February–March 2020, January–April 2021, and November 2021–March 2022) and three summer seasons (August–September 2020, May–June 2021, and May–June 2022). Here we present a statistical evaluation of 16 140 individual cloud events probed by the fast cloud droplet probe and the two-dimensional stereo cloud probe during 155 research flights in a representative and repetitive flight strategy allowing for robust statistical data analyses. We show that the vertical profiles of distributions of the liquid water content and the cloud droplet effective diameter (ED) increase with altitude in the marine boundary layer. Due to higher updraft speeds, higher cloud droplet number concentrations (Nliquid) were measured in winter compared to summer despite lower cloud condensation nucleus abundance. Flight cloud cover derived from statistical analysis of in situ data is reduced in summer and shows large variability. This seasonal contrast in cloud coverage is consistent with a dominance of a synoptic pattern in winter that favors conditions for the formation of stratiform clouds at the western edge of cyclones (post-cyclonic). In contrast, a dominant summer anticyclone is concomitant with the occurrence of shallow cumulus clouds and lower cloud coverage. The evaluation of boundary layer clouds and precipitation in the Nliquid ED phase space sheds light on liquid, mixed-phase, and ice cloud properties and helps to categorize the cloud data. Ice and liquid precipitation, often masked in cloud statistics by a high abundance of liquid clouds, is often observed throughout the cloud. The ACTIVATE in situ cloud measurements provide a wealth of cloud information useful for assessing airborne and satellite remote-sensing products, for global climate and weather model evaluations, and for dedicated process studies that address precipitation and aerosol–cloud interactions.
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Quantifying the degree of coupling between marine boundary layer (MBL) clouds and the surface is critical for understanding the evolution of low clouds and explaining the vertical distribution of aerosols and microphysical cloud properties. Previous work has characterized the boundary layer as either coupled or decoupled, but this study rather considers four degrees of coupling, ranging from strongly to weakly coupled. We use aircraft data from the NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) to assess aerosol and cloud characteristics for the following four regimes, quantified using differences in liquid water potential temperature (θℓ) and total water mixing ratio (qt) between flight data near the surface level (∼150 m) and directly below cloud bases: strong coupling (Δθℓ≤1.0 K, Δqt≤0.8 g kg−1), moderate coupling with high Δθℓ (Δθℓ>1.0 K, Δqt≤0.8 g kg−1), moderate coupling with high Δqt (Δθℓ≤1.0 K, Δqt>0.8 g kg−1), and weak coupling (Δθℓ>1.0 K, Δqt>0.8 g kg−1). Results show that (i) turbulence is greater in the strong coupling regime compared to the weak coupling regime, with the former corresponding to more vertical homogeneity in 550 nm aerosol scattering, integrated aerosol volume concentration, and giant aerosol number concentration (Dp>3 µm) coincident with increased MBL mixing; (ii) cloud drop number concentration is greater during periods of strong coupling due to the greater upward vertical velocity and subsequent activation of particles; and (iii) sea salt tracer species (Na+, Cl−, Mg2+, K+) are present in greater concentrations in the strong coupling regime compared to weak coupling, while tracers of continental pollution (Ca2+, non-sea-salt (nss) SO42-, NO3-, oxalate, and NH4+) are higher in mass fraction for the weak coupling regime. Additionally, pH and Cl-:Na+ (a marker for chloride depletion) are consistently lower in the weak coupling regime. There were also differences between the two moderate regimes: the moderate with high Δqt regime had greater turbulent mixing and sea salt concentrations in cloud water, along with smaller differences in integrated volume and giant aerosol number concentration across the two vertical levels compared. This work shows value in defining multiple coupling regimes (rather than the traditional coupled versus decoupled) and demonstrates differences in aerosol and cloud behavior in the MBL for the various regimes.
Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign
Satellite retrievals of cloud droplet effective radius (re) and optical depth (τ) from the Thirteenth Geostationary Operational Environmental Satellite (GOES-13) and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra, based on the Clouds and the Earth's Radiant Energy System (CERES) project algorithms, are evaluated with airborne data collected over the midlatitude boundary layer during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne dataset comprises in situ re from the Cloud Droplet Probe (CDP) and remotely sensed re and τ from the airborne Research Scanning Polarimeter (RSP). GOES-13 and MODIS (Aqua and Terra) re values are systematically greater than those from the CDP and RSP by at least 4.8 (GOES-13) and 1.7 µm (MODIS) despite relatively high linear correlation coefficients (r=0.52–0.68). In contrast, the satellite τ underestimates its RSP counterpart by −3.0, with r=0.76–0.77. Overall, MODIS yields better agreement with airborne data than GOES-13, with biases consistent with those reported for subtropical stratocumulus clouds. While the negative bias in satellite τ is mostly due to the retrievals having been collected in highly heterogeneous cloud scenes, the causes for the positive bias in satellite re, especially for GOES-13, are more complex. Although the high viewing zenith angle (∼65∘) and coarser pixel resolution for GOES-13 could explain a re bias of at least 0.7 µm, the higher GOES-13 re bias relative to that from MODIS is likely rooted in other factors. In this regard, a near-monotonic increase was also observed in GOES-13 re up to 1.0 µm with the satellite scattering angle (Θ) over the angular range 116–165∘; that is, re increases toward the backscattering direction. Understanding the variations of re with Θ will require the combined use of theoretical computations along with intercomparisons of satellite retrievals derived from sensors with dissimilar viewing geometry.