Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Thuo, David"
Sort by:
Species-informative SNP markers for characterising freshwater prawns of genus Macrobrachium in Cameroon
Single Nucleotide Polymorphisms ( SNPs ) are now popular for a myriad of applications in animal and plant species including, ancestry assignment, conservation genetics, breeding, and traceability of animal products. The objective of this study was to develop a customized cost-effective SNP panel for genetic characterisation of Macrobrachium species in Cameroon. The SNPs identified in a previous characterization study were screened as viable candidates for the reduced panel. Starting from a full set of 1,814 SNPs, a total of 72 core SNPs were chosen using conventional approaches: allele frequency differentials, minor allele frequency profiles, and Wright’s Fst statistics. The discriminatory power of reduced set of informative SNPs were then tested using the admixture analysis, principal component analysis, and discriminant analysis of principal components. The panel of prioritised SNP markers (i.e., N = 72 SNPs) distinguished Macrobrachium species with 100% accuracy. However, large sample size is needed to identify more informative SNPs for discriminating genetically closely related species, including M . macrobrachion versus M . vollenhovenii and M . sollaudii versus M . dux . Overall, the findings in this study show that we can accurately characterise Macrobrachium using a small set of core SNPs which could be useful for this economically important species in Cameroon. Given the results obtained in this study, a larger independent validation sample set will be needed to confirm the discriminative capacity of this SNP panel for wider commercial and research applications.
Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses
Scat DNA metabarcoding is increasingly being used to track the feeding ecology of elusive wildlife species. This approach has greatly increased the resolution and detection success of prey items contained in scats when compared with other classical methods. However, there have been few studies that have systematically tested the applicability and reliability of this approach to study the diet of large felids species in the wild. Here we assessed the effectiveness of this approach in the cheetah Acinonyx jubatus. We tested how scat degradation, meal size, prey species consumed and feeding day (the day a particular prey was consumed) influenced prey DNA detection success in captive cheetahs. We demonstrated that it is possible to obtain diet information from 60-day old scats using genetic approaches, but the efficiency decreased over time. Probability of species-identification was highest for food items consumed one day prior to scat collection and the probability of being able to identify the species consumed increased with the proportion of the prey consumed. Detection success varied among prey species but not by individual cheetah. Identification of prey species using DNA detection methods from a single consumption event worked for samples collected between 8 and 72 hours post-feeding. Our approach confirms the utility of genetic approaches to identify prey species in scats and highlight the need to account for the systematic bias in results to control for possible scat degradation, feeding day, meal size and prey species consumed especially in the wild-collected scats.
Detection of Khapra Beetle Environmental DNA Using Portable Technologies in Australian Biosecurity
Khapra beetle, Trogoderma granarium Everts, 1898, is a serious pest of stored grain products globally. Environmental DNA (eDNA)-based methods offer sensitive detection tools used to inform biosecurity officers on the presence of high-risk pests. This study tested laboratory and portable molecular technologies to detect khapra beetle environmental DNA extracted from dust samples collected during biosecurity responses (Tuggeranong and Fyshwick) to khapra beetle incursions in Australia. Airborne and floor dust samples were collected opportunistically using handheld vacuum cleaners and eDNA was extracted using either field or laboratory-based extraction methods and analyzed using laboratory benchtop real time PCR machines and portable machines with two TaqMan and one LAMP-based assay. We successfully collected, extracted, and amplified khapra beetle eDNA from dust samples by qPCR, but failed to amplify T. granarium eDNA using LAMP. The Laboratory qPCR machine showed significantly higher mean Ct values ( p < 0.001) and significantly higher positive detections for both assays ( p < 0.001) compared to the portable thermocycler. DNA yield was significantly higher in samples extracted using laboratory-based kits compared to field kits ( p < 0.001) for both vacuumed and airborne samples (Mean DNA ± S.D. = 5.52 ± 4.45 and 4.77 ± 1.68 ng/μL, respectively), compared to field kits, (1.75 ± 1.17 and 1.36± 1.29 ng/μL for vacuumed and airborne samples, respectively). There were no significant differences in DNA yield between collection methods or differences in amplification associated to extraction or collection methods in either platform tested in this study. Portable technologies tested in this study (Franklin™ Real Time Thermocycler and Genie III) accurately amplified all tissue derived DNA during assay optimisation and field testing, highlighting the capacity of these technologies to complement biosecurity in confirming specimen ID. There was a high incidence of positive detections in field negative controls (Tuggeranong = 12.3 % and Fyshwick = 50 %), mostly attributed to the use of contaminated vacuum cleaners. We discuss suitable methods to minimize sample cross-contamination, the potential of portable molecular technologies as tools for biosecurity applications, and the suitability of eDNA-based molecular detection methods to complement global trade biosecurity for one of the most invasive and important grain pests worldwide.
Resource pulses influence the spatio‐temporal dynamics of a large carnivore population
Resource availability is a key component in animal ecology, yet the manner in which carnivore populations respond to spatial and temporal fluctuations of resources remains unclear. We take a population‐level approach to determine how resource pulses, in this case a temporary hyper‐abundance of prey, influence the densities and space‐use of cheetahs Acinonyx jubatus. The Maasai Mara in Kenya experiences an annual migration of > 1.4 million wildebeest Connochaetes taurinus and large numbers of zebras Equus quagga and Thomson's gazelle Eudorcas thomsonii thereby providing a natural experiment to examine the influence of resource pulses on carnivore movement and densities. To draw inferences on fluctuating cheetah densities and space‐use, we collected unstructured search‐encounter data during eight sampling sessions, four during and four out of the migration, and analysed these using Bayesian spatially‐explicit capture–recapture (SECR) models with sex‐specific detection function parameters. Both densities and space‐use fluctuated seasonally but this varied according to sex. Local cheetah densities increased in areas and during times when prey abundance was highest but this was more pronounced for females than males. In terms of space‐use, movements were larger during the migration than out of the migration but this was more pronounced for males than females. These results suggest that males are influenced more by resource distribution whereas females by resource abundance. Overall densities did vary but there was no clear pattern in relation to resource pulses. Understanding the behavioural drivers of population dynamics in relation to resource pulses can provide important insights into ecological processes at multiple ecological levels.
Species-informative SNP markers for characterising freshwater prawns of genus Macrobrachium in Cameroon
Single Nucleotide Polymorphisms (SNPs) are now popular for a myriad of applications in animal and plant species including, ancestry assignment, conservation genetics, breeding, and traceability of animal products. The objective of this study was to develop a customized cost-effective SNP panel for genetic characterisation of Macrobrachium species in Cameroon. The SNPs identified in a previous characterization study were screened as viable candidates for the reduced panel. Starting from a full set of 1,814 SNPs, a total of 72 core SNPs were chosen using conventional approaches: allele frequency differentials, minor allele frequency profiles, and Wright’s Fst statistics. The discriminatory power of reduced set of informative SNPs were then tested using the admixture analysis, principal component analysis, and discriminant analysis of principal components. The panel of prioritised SNP markers (i.e., N = 72 SNPs) distinguished Macrobrachium species with 100% accuracy. However, large sample size is needed to identify more informative SNPs for discriminating genetically closely related species, including M. macrobrachion versus M. vollenhovenii and M. sollaudii versus M. dux. Overall, the findings in this study show that we can accurately characterise Macrobrachium using a small set of core SNPs which could be useful for this economically important species in Cameroon. Given the results obtained in this study, a larger independent validation sample set will be needed to confirm the discriminative capacity of this SNP panel for wider commercial and research applications.
The first complete mitochondrial genome of tjaku□a (Great Desert Skink, Liopholis kintorei)
The complete mitochondrial genome (mitogenome) of the tjaku□a, Liopholis kintorei was obtained using next-generation sequencing, making it the first recorded mitogenome of the genus Liopholis and the Tiliquini. The mitogenome is 16,844bp in length with a base composition of A (31.7%), T (24.4%), G (14.6%), and C (29.3%) and a G + C content of 43.9%. The genome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes (12S and 16S), and three non-coding fragments, consisting of the putative control region and two mitochondrially encoded heavy strand origin of replication region (OriH). The gene order is identical to that of typical skink mitogenomes. This genomic resource will provide valuable information for genetic studies of this genus and contribute to the growing collection of mitogenomes within the family Scincidae.
Species-informative SNP markers for characterising freshwater prawns of genus Macrobrachium in Cameroon
Single Nucleotide Polymorphisms (SNPs) are now popular for a myriad of applications in animal and plant species including, ancestry assignment, conservation genetics, breeding, and traceability of animal products. The objective of this study was to develop a customized cost-effective SNP panel for genetic characterisation of Macrobrachium species in Cameroon. The SNPs identified in a previous characterization study were screened as viable candidates for the reduced panel. Starting from a full set of 1,814 SNPs, a total of 72 core SNPs were chosen using conventional approaches: a) allele frequency differentials, minor allele frequency (MAF) profiles, and Wright’s Fst statistics. The discriminatory power of reduced set of informative SNPs were then tested using the admixture analysis, principal component analysis (PCA), and discriminant analysis of principal components (DAPC). The panel of prioritised SNP markers (i.e., N = 72 SNPs) distinguished Macrobrachium species with 100% accuracy. However, large sample size is needed to identify more informative SNPs for discriminating genetically closely related species, including M. macrobrachion versus M. vollenhovenii and M. sollaudii versus M. dux. Overall, the findings in this study show that we can accurately characterise Macrobrachium using a small set of core SNPs which could be useful for commercial breeding operations, conservation, and species assignment of this economically important species in Cameroon. Given the results obtained in this study, a larger independent validation sample set will be needed to confirm the discriminative capacity of this SNP panel for wider commercial and research applications.
Utilization of digital tools to enhance COVID-19 and tuberculosis testing and linkage to care: A cross-sectional evaluation study among Bodaboda motorbike riders in the Nairobi Metropolis, Kenya
Kenya has registered over 300,000 cases of COVID-19 and is a high-burden tuberculosis country. Tuberculosis diagnosis was significantly disrupted by the pandemic. Access to timely diagnosis, which is key to effective management of tuberculosis and COVID-19, can be expanded and made more efficient through integrated screening. Decentralized testing at community level further increases access, especially for underserved populations, and requires robust systems for data and process management. This study delivered integrated COVID-19 and tuberculosis testing to commercial motorbike (Bodaboda) riders, a population at increased risk of both diseases with limited access to services, in four counties: Nairobi, Kiambu, Machakos and Kajiado. Testing sheds were established where riders congregate, with demand creation carried out by the Bodaboda association. Integrated symptom screening for tuberculosis and COVID-19 was conducted through a digital questionnaire which automatically flagged participants who should be tested for either, or both, diseases. Rapid antigen-detecting tests (Ag-RDTs) for COVID-19 were conducted onsite, while sputum samples were collected and transported to laboratories for tuberculosis diagnosis. End-to-end patient data were captured using digital tools. 5663 participants enrolled in the study, 4946 of whom were tested for COVID-19. Ag-RDT positivity rate was 1% but fluctuated widely across counties in line with broader regional trends. Among a subset tested by PCR, positivity was greater in individuals flagged as high risk by the digital tool (8% compared with 4% overall). Of 355 participants tested for tuberculosis, 7 were positive, with the resulting prevalence rate higher than the national average. Over 40% of riders had elevated blood pressure or abnormal sugar levels. The digital tool successfully captured complete end-to-end data for 95% of all participants. This study revealed high rates of undetected disease among Bodaboda riders and demonstrated that integrated diagnosis can be delivered effectively in communities, with the support of digital tools, to maximize access.
Developing a seasonal influenza vaccine recommendation in Kenya: Process and challenges faced by the National Immunization Technical Advisory Group (NITAG)
•Little is known about the practical challenges that NITAGs in LMICs face.•Kenyan local disease burden data were critical for influenza vaccine deliberations.•Significant gaps in local data limited the vaccine recommendation to 1 target group.•Insufficient dedicated personnel and funding hindered NITAG activities.•Programmatic costs are an important consideration for policy makers.•Economic evaluation data should be further emphasised in vaccine policy decisions. In 2014 the Kenya National Immunization Technical Advisory Group (KENITAG) was asked by the Ministry of Health to provide an evidence-based recommendation on whether the seasonal influenza vaccine should be introduced into the national immunization program (NIP). We reviewed KENITAG manuals, reports and meeting minutes generated between June 2014 and June 2016 in order to describe the process KENITAG used in arriving at that recommendation and the challenges encountered. KENITAG developed a recommendation framework to identify critical, important and non-critical data elements that would guide deliberations on the subject. Literature searches were conducted in several databases and the quality of scientific articles obtained was assessed using the Critical Appraisal Skills Programme tool. There were significant gaps in knowledge on the national burden of influenza disease among key risk groups, i.e., pregnant women, individuals with co-morbidities, the elderly and health care workers. Insufficient funding and limited work force hindered KENITAG activities. In 2016 KENITAG recommended introduction of the annual seasonal influenza vaccine among children 6 to 23 months of age. However, the recommendation was contingent on implementation of a pilot study to address gaps in local data on the socio-economic impact of influenza vaccination programs, strategies for vaccine delivery, and the impact of the vaccination program on the healthcare workforce and existing immunization program. KENITAG did not recommend the influenza vaccine for any other risk group due to lack of local burden of disease data. Local data are a critical element in NITAG deliberations, however, where local data and in particular burden of disease data are lacking, there is need to adopt scientifically acceptable methods of utilizing findings from other countries to inform local decisions in a manner that is valid and acceptable to decision makers.