Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
420 result(s) for "Thuong, Nguyen Thi"
Sort by:
Influenza virus infection history shapes antibody responses to influenza vaccination
Studies of successive vaccination suggest that immunological memory against past influenza viruses may limit responses to vaccines containing current strains. The impact of memory induced by prior infection is rarely considered and is difficult to ascertain, because infections are often subclinical. This study investigated influenza vaccination among adults from the Ha Nam cohort (Vietnam), who were purposefully selected to include 72 with and 28 without documented influenza A(H3N2) infection during the preceding 9 years (Australian New Zealand Clinical Trials Registry 12621000110886). The primary outcome was the effect of prior influenza A(H3N2) infection on hemagglutinin-inhibiting antibody responses induced by a locally available influenza vaccine administered in November 2016. Baseline and postvaccination sera were titrated against 40 influenza A(H3N2) strains spanning 1968–2018. At each time point (baseline, day 14 and day 280), geometric mean antibody titers against 2008–2018 strains were higher among participants with recent infection (34 (29–40), 187 (154–227) and 86 (72–103)) than among participants without recent infection (19 (17–22), 91 (64–130) and 38 (30–49)). On days 14 and 280, mean titer rises against 2014–2018 strains were 6.1-fold (5.0- to 7.4-fold) and 2.6-fold (2.2- to 3.1-fold) for participants with recent infection versus 4.8-fold (3.5- to 6.7-fold) and 1.9-fold (1.5- to 2.3-fold) for those without. One of 72 vaccinees with recent infection versus 4 of 28 without developed symptomatic A(H3N2) infection in the season after vaccination ( P  = 0.021). The range of A(H3N2) viruses recognized by vaccine-induced antibodies was associated with the prior infection strain. These results suggest that recall of immunological memory induced by prior infection enhances antibody responses to inactivated influenza vaccine and is important to attain protective antibody titers. Recent prior influenza A infection is associated with elevated hemagglutinin-inhibiting antibody responses and greater breadth of reactivity to influenza strains following vaccination, suggesting that infection history boosts vaccine responses.
Genetic diversity of SARS-CoV-2 and clinical, epidemiological characteristics of COVID-19 patients in Hanoi, Vietnam
A second cluster of COVID-19 cases imported from Europe occured in Vietnam from early March 2020. We describe 44 SARS-CoV-2 RT-PCR positive patients (cycle threshold value <30) admitted to the National Hospital for Tropical Diseases in Hanoi between March 6 and April 15 2020. Whole SARS-CoV-2 genomes from these patients were sequenced using Illumina Miseq and analysed for common genetic variants and relationships to local and globally circulating strains. Results showed that 32 cases were Vietnamese with a median age of 37 years (range 15–74 years), and 23 were male. Most cases were acquired outside Vietnam, mainly from the UK (n = 15), other European countries (n = 14), Russia (n = 6) and countries in Asia (n = 3). No cases had travelled from China. Forty-one cases had symptoms at admission, typically dry cough (n = 36), fever (n = 20), sore throat (n = 14) and diarrhoea (n = 12). Hospitalisation was long with a median of 25 days, most commonly from 20–29 days. All SARS-CoV-2 genomes were similar (92–100% sequence homology) to the reference sequence Wuhan_1 (NC_045512), and 32 strains belonged to the B.1.1 lineage. The three most common variants were linked, and included C3037T, C14408T (nsp12: P323L) and A23403G (S: D614G) mutations. This group of mutations often accompanied variant C241T (39/44 genomes) or GGG 28881..28883 AAC (33/44 genomes). The prevalence of the former reflected probable European origin of viruses, and the transition D614G was dominant in Vietnam. New variants were identified; however, none could be associated with disease severity.
Detection of co-infection and recombination cases with Omicron and local Delta variants of SARS-CoV-2 in Vietnam
The first nationwide outbreak of COVID-19 in Vietnam started in late April 2021 and was caused almost exclusively by a single Delta lineage, AY.57. In early 2022, multiple Omicron variants co-circulated with Delta variants and quickly became dominant. The co-circulation of Delta and Omicron happened leading to possibility of co-infection and recombination events which can be revealed by viral genomic data. From January to October 2022, a total of 1028 viral RNA samples out of 4852 positive samples (Ct < 30) were sequenced by the long pooled amplicons method on Illumina platforms. All sequencing data was analysed by the workflow for SARS-CoV-2 on CLC genomics workbench and Illumina Dragen Covid application. Among those sequenced samples, we detected a case of Delta AY.57/Omicron BA.1 co-infection and two cases of infection with Delta AY.57/Omicron BA.2 recombinants which were nearly identical and had different epidemiological characteristics. Since the AY.57 lineage circulated almost exclusively in Vietnam, these results strongly suggest domestic events of co-infection and recombination. These findings highlight the strengths of genomic surveillance in monitoring the circulating variants in the community enabling rapid identification of viral changes that may affect viral properties and evolutionary events.
An investigation of seasonal variations in the microbiota of milk, feces, bedding, and airborne dust
ObjectiveThe microbiota of dairy cow milk varies with the season, and this accounts in part for the seasonal variation in mastitis-causing bacteria and milk spoilage. The microbiota of the cowshed may be the most important factor because the teats of a dairy cow contact bedding material when the cow is resting. The objectives of the present study were to determine whether the microbiota of the milk and the cowshed vary between seasons, and to elucidate the relationship between the microbiota.MethodsWe used 16S rRNA gene amplicon sequencing to investigate the microbiota of milk, feces, bedding, and airborne dust collected at a dairy farm during summer and winter.ResultsThe seasonal differences in the milk yield and milk composition were marginal. The fecal microbiota was stable across the two seasons. Many bacterial taxa of the bedding and airborne dust microbiota exhibited distinctive seasonal variation. In the milk microbiota, the abundances of Staphylococcaceae, Bacillaceae, Streptococcaceae, Microbacteriaceae, and Micrococcaceae were affected by the seasons; however, only Micrococcaceae had the same seasonal variation pattern as the bedding and airborne dust microbiota. Nevertheless, canonical analysis of principle coordinates revealed a distinctive group comprising the milk, bedding, and airborne dust microbiota.ConclusionAlthough the milk microbiota is related to the bedding and airborne dust microbiota, the relationship may not account for the seasonal variation in the milk microbiota. Some major bacterial families stably found in the bedding and airborne dust microbiota, e.g., Staphylococcaceae, Moraxellaceae, Ruminococcaceae, and Bacteroidaceae, may have greater influences than those that varied between seasons.
Assessing Knowledge, Attitude, and Behavior in Household Solid Waste Management in Northern Vietnam
Rapid urbanization and population growth in Northern Vietnam have exacerbated in domestic solid waste (DSW), posing environmental challenges. Law on environmental protection (2020) promoting source separation, a disconnect persists between policy and public action. This study addresses this gap by employing a Knowledge, Attitude, and Behavior (KAB) approach to conduct a novel regional analysis of DSW management practices. A stratified random sampling design was utilized, with 1,000 people participating from five different regions of Northern Vietnam: delta rural areas, mountainous rural areas, coastal rural areas, tourism development areas, and urban areas. Data analytic techniques, including descriptive statistics, exploratory factor analysis and multiple regression analysis, were employed to uncover factors that influence DSW management behavior in each location. The research revealed significant regional variations in KAB aspects of DSW services. While positive attitudes towards responsible SWM practices (80% of people) were evident, the number of factors influencing DSW management varied (3-6) across regions. These findings provide valuable insights for policymakers, guiding the development of targeted interventions that align with national law. This paves the way for more effective, regionally-tailored waste management practices in Vietnam.
Process Optimization by a Response Surface Methodology for Adsorption of Congo Red Dye onto Exfoliated Graphite-Decorated MnFe2O4 Nanocomposite: The Pivotal Role of Surface Chemistry
Natural graphite, a locally available, eco-friendly, and low-cost carbonaceous source, can be easily transformed into exfoliated graphite (EG) with many surface functional groups via a chemical oxidation route. Combination between EG and magnetic MnFe2O4 is a promising strategy to create a hybrid kind of nanocomposite (EG@MnFe2O4) for the efficient adsorptive removal of Congo red (CR) dye from water. Here, we reported the facile synthesis and characterization of chemical bonds of EG@MnFe2O4 using several techniques such as Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). In particular, the quantity method by Boehm titration was employed to identify the content of functional groups: Carboxylic acid (0.044 mmol/g), phenol (0.032 mmol/g), lactone (0.020 mmol/g), and total base (0.0156 mmol/g) on the surface of EG@MnFe2O4. Through the response surface methodology-optimized models, we found a clear difference in the adsorption capacity between EG-decorated MnFe2O4 (62.0 mg/g) and MnFe2O4 without EG decoration (11.1 mg/g). This result was also interpreted via a proposed mechanism to elucidate the contribution of surface functional groups of EG@MnFe2O4 to adsorption efficiency towards CR dye.
Facile Synthesis of Propranolol and Novel Derivatives
Propranolol is one of the first medications of the beta-blocker used for antihypertensive drugs. This study reports the facile route for the synthesis of propranolol and its novel derivatives. Herein, propranolol synthesis proceeded from 1-naphthol and isopropylamine under mild and less toxic conditions. Novel propranolol derivatives were designed by reactions of propranolol with benzoyl chloride, pyridinium chlorochromate, and n-butyl bromide through esterification, oxidation reduction, and alkylation, respectively. The isolation and purity of compounds were conducted using column chromatography and thin-layer chromatography. Mass spectrometry and 1H-NMR spectroscopy were applied to identify new compounds structure. Propranolol derivatives from 2-chlorobenzoyl chloride (compound 3), 2-fluorobenzoyl chloride (compound 5), and especially acetic anhydride (compound 6) manifested high yields and significantly increased water solubility. Six semisynthetic propranolol derivatives promise to improve antioxidative and biological activities.
The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution
Recently, organic contaminants from textile and dye industry have adversely affected on human's health and living things. Hence, the development of effective contaminated water treatment is one of the most crucial tasks. Expanded Graphite (EG) has been considered as efficient platforms to remove of organic dyes from aqueous solution due to its excellent performance. The main objective of the present work is to investigate adsorption behavior of methylene blue (MB) and Congo Red (CO) on exfoliated graphite fabricated using flake graphite from Yen Bai province. The exfoliation of graphite was carried out using potassium permanganate and perchloric acid as oxidant agent and anhydride acetic as intercalating agent via microwave-assisted technique. The properties of EG were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy and nitrogen adsorption/desorption analysis. In batch adsorption experiments, various factors including initial dye concentration (50-600 ppm), adsorbent dosage (0.5-3 g/L), contact time (10-120 min) and pH of solution (4-10) were also studied. It is found that as-prepared EG provided high removal efficiency and fast adsorption rate for MB and CO. The maximum adsorption capacity of EG for CO and MB was found at 201.21 and 47.62 mg/g, respectively. These results demonstrate that the as-synthesized EG appears as an efficient and low-cost platform for remediation of colored effluents via adsorption route.
Biocontrol of Soft Rot Caused by Pectobacterium odoriferum with Bacteriophage phiPccP-1 in Kimchi Cabbage
Pectobacterium odoriferum has recently emerged as a widely infective and destructive pathogen causing soft-rot disease in various vegetables. Bacteriophage phiPccP-1 isolated from Pyeongchang, South Korea, showed lytic activity against P. odoriferum Pco14 and two other Pectobacterium species. The transmission electron microscopy and genome phylograms revealed that phiPccP-1 belongs to the Unyawovirus genus, Studiervirinae subfamily of the Autographivirinae family. Genome comparison showed that its 40,487 bp double-stranded DNA genome shares significant similarity with Pectobacterium phage DU_PP_II with the identity reaching 98% of the genome. The phiPccP-1 application significantly inhibited the development of soft-rot disease in the mature leaves of the harvested Kimchi cabbage up to 48 h after Pco14 inoculation compared to the untreated leaves, suggesting that phiPccP-1 can protect Kimchi cabbage from soft-rot disease after harvest. Remarkably, bioassays with phiPccP-1 in Kimchi cabbage seedlings grown in the growth chamber successfully demonstrated its prophylactic and therapeutic potential in the control of bacterial soft-rot disease in Kimchi cabbage. These results indicate that bacteriophage phiPccP-1 can be used as a potential biological agent for controlling soft rot disease in Kimchi cabbage.
Isolation of DNA from Arthrospira platensis and whole blood using magnetic nanoparticles (Fe3O4@OA and Fe3O4@OA@SiO2)
Magnetic nanoparticles (MNPs) provide a fast, cost-effective, and organic-free method for DNA isolation. In this paper, we synthesized MNP coated with oleic acid (Fe3O4@OA) and silica nanoparticles (Fe3O4@OA@SiO2), characterized the properties of MNP using TEM, VSM, and FTIR, and investigated their efficiency in DNA isolation from cyanobacteria. The yield and quality of isolated DNA were evaluated and compared with those from animal blood and those obtained by the silica column or organic solvents. The results showed the successful preparations of Fe3O4@OA and Fe3O4@OA@SiO2 with superparamagnetic behaviors and a mean diameter of 7 nm and 106 nm, respectively. The FTIR spectra of Fe3O4@OA confirmed the bonding of OA to the surface of iron oxide, while those of Fe3O4@OA@SiO2 showed the exposed silanol groups. Although MNPs yielded a lower quantity of DNA compared with phenol/chloroform extraction, they showed the potential protection of the integrity of DNA against centrifugal and shear forces. Fe3O4@OA@SiO2 favored more nucleic acid absorption than Fe3O4@OA, producing a 1.2 and 1.6 times greater amount of DNA from Arthrospira platensis and animal blood respectively. The purity of DNA isolated from Arthrospira platensis was also higher than that of animal blood. These findings indicate a new and simple approach for the isolation of DNA from Arthrospira genus.