Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Tiddia, Gianmarco"
Sort by:
Explainable AI Highlights the Most Relevant Gait Features for Neurodegenerative Disease Classification
Gait analysis is a valuable tool for aiding in the diagnosis of neurological diseases, providing objective measurements of human gait kinematics and kinetics. These data enable the quantitative estimation of movement abnormalities, which helps to diagnose disorders and assess their severity. In this regard, machine learning techniques and explainability methods offer an opportunity to enhance anomaly detection in gait measurements and support a more objective assessment of neurodegenerative disease, providing insights into the most relevant gait parameters used for disease identification. This study employs several classifiers and explainability methods to analyze gait data from a public dataset composed of patients affected by degenerative neurological diseases and healthy controls. The work investigates the relevance of spatial, temporal, and kinematic gait parameters in distinguishing such diseases. The findings are consistent among the classifiers employed and in agreement with known clinical findings about the major gait impairments for each disease. This work promotes the use of data-driven assessments in clinical settings, helping reduce subjectivity in gait evaluation and enabling broader deployment in healthcare environments.
Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs
Over the past decade there has been a growing interest in the development of parallel hardware systems for simulating large-scale networks of spiking neurons. Compared to other highly-parallel systems, GPU-accelerated solutions have the advantage of a relatively low cost and a great versatility, thanks also to the possibility of using the CUDA-C/C++ programming languages. NeuronGPU is a GPU library for large-scale simulations of spiking neural network models, written in the C++ and CUDA-C++ programming languages, based on a novel spike-delivery algorithm. This library includes simple LIF (leaky-integrate-and-fire) neuron models as well as several multisynapse AdEx (adaptive-exponential-integrate-and-fire) neuron models with current or conductance based synapses, different types of spike generators, tools for recording spikes, state variables and parameters, and it supports user-definable models. The numerical solution of the differential equations of the dynamics of the AdEx models is performed through a parallel implementation, written in CUDA-C++, of the fifth-order Runge-Kutta method with adaptive step-size control. In this work we evaluate the performance of this library on the simulation of a cortical microcircuit model, based on LIF neurons and current-based synapses, and on balanced networks of excitatory and inhibitory neurons, using AdEx or Izhikevich neuron models and conductance-based or current-based synapses. On these models, we will show that the proposed library achieves state-of-the-art performance in terms of simulation time per second of biological activity. In particular, using a single NVIDIA GeForce RTX 2080 Ti GPU board, the full-scale cortical-microcircuit model, which includes about 77,000 neurons and 3 · 10 8 connections, can be simulated at a speed very close to real time, while the simulation time of a balanced network of 1,000,000 AdEx neurons with 1,000 connections per neuron was about 70 s per second of biological activity.
Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories.
Simulations of working memory spiking networks driven by short-term plasticity
Working Memory is a cognitive mechanism which enables temporary holding and manipulation of information in the human brain. This mechanism is mainly characterized by a neuronal persistent activity during which neuron populations are able to maintain an enhanced spiking activity after being triggered by a short external cue. In this work we implement, using the NEST simulator, a spiking neural network model in which the working memory activity is sustained by a mechanism of short-term synaptic facilitation related to calcium kinetics. The model, characterized by leaky integrate-and-fire neurons with exponential postsynaptic currents, is able to autonomously show an activity regime in which the memory information can be stored in a synaptic form as a result of synaptic facilitation, with spiking activity functional to facilitation maintenance. The network is able to simultaneously keep multiple memories by showing an alternated synchronous activity which preserves the synaptic facilitation within the neuron populations holding memory information. The results shown in this work confirm that a working memory mechanism can be sustained by synaptic facilitation.
Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices
Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses but also how long it takes to instantiate the network model in computer memory. On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches ensure highly optimized code at the expense of repeated code regeneration and recompilation after modifications to the network model. Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules. We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules. With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies while still meeting the flexibility demands of explorative network modeling.
Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster
Spiking neural network models are increasingly establishing themselves as an effective tool for simulating the dynamics of neuronal populations and for understanding the relationship between these dynamics and brain function. Furthermore, the continuous development of parallel computing technologies and the growing availability of computational resources are leading to an era of large-scale simulations capable of describing regions of the brain of ever larger dimensions at increasing detail. Recently, the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such complex simulations has emerged, opening up novel paths to further speed-ups. NEST GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking neural networks, which was recently extended with a novel algorithm for remote spike communication through MPI on a GPU cluster. In this work we evaluate its performance on the simulation of a multi-area model of macaque vision-related cortex, made up of about 4 million neurons and 24 billion synapses and representing 32 mm^2 surface area of the macaque cortex. The outcome of the simulations is compared against that obtained using the well-known CPU-based spiking neural network simulator NEST on a high-performance computing cluster. The results show not only an optimal match with the NEST statistical measures of the neural activity in terms of three informative distributions, but also remarkable achievements in terms of simulation time per second of biological activity. Indeed, NEST GPU was able to simulate a second of biological time of the full-scale macaque cortex model in its metastable state 3.1 times faster than NEST using 32 compute nodes equipped with an NVIDIA V100 GPU each. Using the same configuration, the ground state of the full-scale macaque cortex model was simulated 2.4 times faster than NEST.
A theoretical framework for learning through structural plasticity
A growing body of research indicates that structural plasticity mechanisms are crucial for learning and memory consolidation. Starting from a simple phenomenological model, we exploit a mean-field approach to develop a theoretical framework of learning through this kind of plasticity, capable of taking into account several features of the connectivity and pattern of activity of biological neural networks, including probability distributions of neuron firing rates, selectivity of the responses of single neurons to multiple stimuli, probabilistic connection rules and noisy stimuli. More importantly, it describes the effects of stabilization, pruning and reorganization of synaptic connections. This framework is used to compute the values of some relevant quantities used to characterize the learning and memory capabilities of the neuronal network in training and testing procedures as the number of training patterns and other model parameters vary. The results are then compared with those obtained through simulations with firing-rate-based neuronal network models.
Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices
Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses, but also how long it takes to instantiate the network model in computer memory. On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches ensure highly optimized code, at the expense of repeated code regeneration and recompilation after modifications to the network model. Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules. We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules. With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies, while still meeting the flexibility demands of explorative network modeling.
Fast simulations of highly-connected spiking cortical models using GPUs
Over the past decade there has been a growing interest in the development of parallel hardware systems for simulating large-scale networks of spiking neurons. Compared to other highly-parallel systems, GPU-accelerated solutions have the advantage of a relatively low cost and a great versatility, thanks also to the possibility of using the CUDA-C/C++ programming languages. NeuronGPU is a GPU library for large-scale simulations of spiking neural network models, written in the C++ and CUDA-C++ programming languages, based on a novel spike-delivery algorithm. This library includes simple LIF (leaky-integrate-and-fire) neuron models as well as several multisynapse AdEx (adaptive-exponential-integrate-and-fire) neuron models with current or conductance based synapses, user definable models and different devices. The numerical solution of the differential equations of the dynamics of the AdEx models is performed through a parallel implementation, written in CUDA-C++, of the fifth-order Runge-Kutta method with adaptive step-size control. In this work we evaluate the performance of this library on the simulation of a cortical microcircuit model, based on LIF neurons and current-based synapses, and on a balanced network of excitatory and inhibitory neurons, using AdEx neurons and conductance-based synapses. On these models, we will show that the proposed library achieves state-of-the-art performance in terms of simulation time per second of biological activity. In particular, using a single NVIDIA GeForce RTX 2080 Ti GPU board, the full-scale cortical-microcircuit model, which includes about 77,000 neurons and \\(3 \\cdot 10^8\\) connections, can be simulated at a speed very close to real time, while the simulation time of a balanced network of 1,000,000 AdEx neurons with 1,000 connections per neuron was about 70 s per second of biological activity.
Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep-mediated noise-resilience
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories.