Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
107
result(s) for
"Tierney, Adam"
Sort by:
Music training alters the course of adolescent auditory development
by
Kraus, Nina
,
Tierney, Adam T.
,
Krizman, Jennifer
in
Adolescent
,
Adolescents
,
Auditory Cortex - growth & development
2015
Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is wellknown. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another inschool training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that inschool music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes.
Journal Article
Beat synchronization predicts neural speech encoding and reading readiness in preschoolers
by
White-Schwoch, Travis
,
Tierney, Adam T.
,
Strait, Dana L.
in
Acoustic Stimulation - methods
,
adults
,
Analysis of Variance
2014
Significance Sensitivity to fine timing cues in speech is thought to play a key role in language learning, facilitating the development of phonological processing. In fact, a link between beat synchronization, which requires fine auditory–motor synchrony, and language skills has been found in school-aged children, as well as adults. Here, we show this relationship between beat entrainment and language metrics in preschoolers and use beat synchronization ability to predict the precision of neural encoding of speech syllables in these emergent readers. By establishing links between beat keeping, neural precision, and reading readiness, our results provide an integrated framework that offers insights into the preparative biology of reading.
Temporal cues are important for discerning word boundaries and syllable segments in speech; their perception facilitates language acquisition and development. Beat synchronization and neural encoding of speech reflect precision in processing temporal cues and have been linked to reading skills. In poor readers, diminished neural precision may contribute to rhythmic and phonological deficits. Here we establish links between beat synchronization and speech processing in children who have not yet begun to read: preschoolers who can entrain to an external beat have more faithful neural encoding of temporal modulations in speech and score higher on tests of early language skills. In summary, we propose precise neural encoding of temporal modulations as a key mechanism underlying reading acquisition. Because beat synchronization abilities emerge at an early age, these findings may inform strategies for early detection of and intervention for language-based learning disabilities.
Journal Article
Evidence for Multiple Rhythmic Skills
2015
Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions.
Journal Article
Effects of auditory selective attention on neural phase: individual differences and short-term training
2020
How does the brain follow a sound that is mixed with others in a noisy environment? One possible strategy is to allocate attention to task-relevant time intervals. Prior work has linked auditory selective attention to alignment of neural modulations with stimulus temporal structure. However, since this prior research used relatively easy tasks and focused on analysis of main effects of attention across participants, relatively little is known about the neural foundations of individual differences in auditory selective attention. Here we investigated individual differences in auditory selective attention by asking participants to perform a 1-back task on a target auditory stream while ignoring a distractor auditory stream presented 180° out of phase. Neural entrainment to the attended auditory stream was strongly linked to individual differences in task performance. Some variability in performance was accounted for by degree of musical training, suggesting a link between long-term auditory experience and auditory selective attention. To investigate whether short-term improvements in auditory selective attention are possible, we gave participants 2 h of auditory selective attention training and found improvements in both task performance and enhancements of the effects of attention on neural phase angle. Our results suggest that although there exist large individual differences in auditory selective attention and attentional modulation of neural phase angle, this skill improves after a small amount of targeted training.
•Attention to melodies was linked to shifts in neural phase.•Just a few hours of practice improved auditory selective attention.•Performance enhancements were tied to greater attentional shifts in neural phase.•Our results demonstrate rapid plasticity in top-down control of auditory processing.
Journal Article
Slow phase-locked modulations support selective attention to sound
by
Dick, Fred
,
Laffere, Aeron
,
Tierney, Adam
in
Acoustic Stimulation - methods
,
Acoustics
,
Attention
2022
To make sense of complex soundscapes, listeners must select and attend to task-relevant streams while ignoring uninformative sounds. One possible neural mechanism underlying this process is alignment of endogenous oscillations with the temporal structure of the target sound stream. Such a mechanism has been suggested to mediate attentional modulation of neural phase-locking to the rhythms of attended sounds. However, such modulations are compatible with an alternate framework, where attention acts as a filter that enhances exogenously-driven neural auditory responses. Here we attempted to test several predictions arising from the oscillatory account by playing two tone streams varying across conditions in tone duration and presentation rate; participants attended to one stream or listened passively. Attentional modulation of the evoked waveform was roughly sinusoidal and scaled with rate, while the passive response did not. However, there was only limited evidence for continuation of modulations through the silence between sequences. These results suggest that attentionally-driven changes in phase alignment reflect synchronization of slow endogenous activity with the temporal structure of attended stimuli.
Journal Article
Dimension-selective attention and dimensional salience modulate cortical tracking of acoustic dimensions
2021
Some theories of auditory categorization suggest that auditory dimensions that are strongly diagnostic for particular categories - for instance voice onset time or fundamental frequency in the case of some spoken consonants - attract attention. However, prior cognitive neuroscience research on auditory selective attention has largely focused on attention to simple auditory objects or streams, and so little is known about the neural mechanisms that underpin dimension-selective attention, or how the relative salience of variations along these dimensions might modulate neural signatures of attention. Here we investigate whether dimensional salience and dimension-selective attention modulate the cortical tracking of acoustic dimensions. In two experiments, participants listened to tone sequences varying in pitch and spectral peak frequency; these two dimensions changed at different rates. Inter-trial phase coherence (ITPC) and amplitude of the EEG signal at the frequencies tagged to pitch and spectral changes provided a measure of cortical tracking of these dimensions. In Experiment 1, tone sequences varied in the size of the pitch intervals, while the size of spectral peak intervals remained constant. Cortical tracking of pitch changes was greater for sequences with larger compared to smaller pitch intervals, with no difference in cortical tracking of spectral peak changes. In Experiment 2, participants selectively attended to either pitch or spectral peak. Cortical tracking was stronger in response to the attended compared to unattended dimension for both pitch and spectral peak. These findings suggest that attention can enhance the cortical tracking of specific acoustic dimensions rather than simply enhancing tracking of the auditory object as a whole.
Journal Article
Domain-general auditory processing determines success in second language pronunciation learning in adulthood: A longitudinal study
2020
In this study, we propose a hypothesis that domain-general auditory processing, a perceptual–cognitive anchor of first language (L1) acquisition, can serve as an important deciding factor for successful postpubertal second language (L2) pronunciation learning. To examine this hypothesis, samples of spontaneous speech were elicited from a total of 30 L1 Chinese L2 English learners at two points (outset and endpoint) during an 8-month study-abroad period in the United Kingdom. The participants were tested on three different components of auditory processing ability (formant, pitch, and duration discrimination) using behavioral instruments. The auditory processing scores were then linked to the segmental, prosodic, and fluency dimensions of their L2 pronunciation proficiency development throughout the project. Overall, most learners’ speech became smoother, faster, and more fluent (fewer pauses, faster articulation rate, and more optimal perceived tempo). Certain learners with high-level auditory processing ability (more precise formant discrimination) appeared to further attain more correct pronunciation of individual sounds and words (greater segmental and word stress accuracy), leading to more advanced L2 phonological skills (fluent and accurate). The findings suggest that auditory processing abilities can be a root of language learning throughout the life span and may apply to the initial- to midphase of naturalistic L2 pronunciation learning in adulthood.
Journal Article
Attentional modulation of neural entrainment to sound streams in children with and without ADHD
2021
To extract meaningful information from complex auditory scenes like a noisy playground, rock concert, or classroom, children can direct attention to different sound streams. One means of accomplishing this might be to align neural activity with the temporal structure of a target stream, such as a specific talker or melody. However, this may be more difficult for children with ADHD, who can struggle with accurately perceiving and producing temporal intervals. In this EEG study, we found that school-aged children's attention to one of two temporally-interleaved isochronous tone 'melodies' was linked to an increase in phase-locking at the melody's rate, and a shift in neural phase that aligned the neural responses with the attended tone stream. Children's attention task performance and neural phase alignment with the attended melody were linked to performance on temporal production tasks, suggesting that children with more robust control over motor timing were better able to direct attention to the time points associated with the target melody. Finally, we found that although children with ADHD performed less accurately on the tonal attention task than typically developing children, they showed the same degree of attentional modulation of phase locking and neural phase shifts, suggesting that children with ADHD may have difficulty with attentional engagement rather than attentional selection.
Journal Article
Altered functional connectivity during speech perception in congenital amusia
2020
Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N = 15) and controls (N = 15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions and suggest a compensatory mechanism.
Spoken language is colored by fluctuations in pitch and rhythm. Rather than speaking in a flat monotone, we allow our sentences to rise and fall. We vary the length of syllables, drawing out some, and shortening others. These fluctuations, known as prosody, add emotion to speech and denote punctuation. In written language, we use a comma or a period to signal a boundary between phrases. In speech, we use changes in pitch – how deep or sharp a voice sounds – or in the length of syllables.
Having more than one type of cue that can signal emotion or transitions between sentences has a number of advantages. It means that people can understand each other even when factors such as background noise obscure one set of cues. It also means that people with impaired sound perception can still understand speech. Those with a condition called congenital amusia, for example, struggle to perceive pitch, but they can compensate for this difficulty by placing greater emphasis on other aspects of speech.
Jasmin et al. showed how the brain achieves this by comparing the brain activities of people with and without amusia. Participants were asked to read sentences on a screen where a comma indicated a boundary between two phrases. They then heard two spoken sentences, and had to choose the one that matched the written sentence. The spoken sentences used changes in pitch and/or syllable duration to signal the position of the comma. This provided listeners with the information needed to distinguish between \"after John runs the race, ...\" and \"after John runs, the race...\", for example.
When two brain regions communicate, they tend to increase their activity at around the same time. The brain regions are then said to show functional connectivity. Jasmin et al. found that compared to healthy volunteers, people with amusia showed less functional connectivity between left hemisphere brain regions that process language and right hemisphere regions that process pitch. In other words, because pitch is a less reliable source of information for people with amusia, they recruit pitch-related brain regions less when processing speech.
These results add to our understanding of how brains compensate for impaired perception. This may be useful for understanding the neural basis of compensation in other clinical conditions. It could also help us design bespoke hearing aids or other communication devices, such as computer programs that convert text into speech. Such programs could tailor the pitch and rhythm characteristics of the speech they produce to suit the perception of individual users.
Journal Article
Beat Synchronization across the Lifespan: Intersection of Development and Musical Experience
by
White-Schwoch, Travis
,
Tierney, Adam
,
Thompson, Elaine C.
in
Acoustic Stimulation
,
Adolescent
,
Adult
2015
Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145), and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age), however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample.
Journal Article