Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Timperley, Christopher M"
Sort by:
Structure-activity studies of bispyridinium antinicotinics to select candidates to treat soman intoxication as part of a combined therapy
by
Bird, Mike
,
Turner, Simon R.
,
Rice, Helen
in
Acetylcholinesterase
,
Acetylcholinesterase - metabolism
,
Alkanes
2025
The standard treatment of atropine and oximes is insufficiently effective against all organophosphorus nerve agents. Bispyridinium non-oxime nicotinic antagonists are promising components to add to treatments. One of these, MB327, improves the survival of guinea-pigs after intoxication with tabun, sarin or soman. We extend our previous study of unsubstituted bispyridinium non-oximes with C1 to C10 alkane linkers to analogues having 4- tert- butylpyridinium rings and the same linker range. We report their effects on nicotinic-mediated calcium responses in muscle-derived (CN21) cells where nicotinic responses were inhibited in a concentration-dependent manner. A clear structure-activity relationship resulted: the inhibitory potency increased as the linker lengthened. Previous data showed the inhibition of human acetylcholinesterase in vitro increased similarly and that in general the toxicity to mice increased accordingly. However, the shorter analogues MB327 (4- tert- butyl C3) and MB442 (unsubstituted C5) compared favourably in toxicity to some oximes used to treat nerve agent poisoning. Like MB327, the non-oxime MB442, selected by the process described, improved the survival of guinea-pigs intoxicated with soman when combined with hyoscine and physostigmine or atropine and avizafone. Our research has now afforded two compounds able to protect guinea-pigs against nerve agent toxicity through a mechanism not previously exploited deliberately for this purpose.
Journal Article
Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines
by
Ring, Avi
,
Strom, Bjorn Oddvar
,
Turner, Simon R.
in
Acetylcholine receptors (muscarinic)
,
Acetylcholine receptors (nicotinic)
,
Acetylcholinesterase
2015
Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.
Journal Article
Influence of Experimental End Point on the Therapeutic Efficacy of Essential and Additional Antidotes in Organophosphorus Nerve Agent-Intoxicated Mice
2022
The therapeutic efficacy of treatments for acute intoxication with highly toxic organophosphorus compounds, called nerve agents, usually involves determination of LD50 values 24 h after nerve agent challenge without and with a single administration of the treatment. Herein, the LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated intoxication were investigated in mice for experimental end points of 6 and 24 h. The LD50 values of the nerve agents were evaluated by probit-logarithmical analysis of deaths within 6 and 24 h of i.m. challenge of the nerve agent at five different doses, using six mice per dose. The efficiency of atropine alone or atropine in combination with an oxime was practically the same at 6 and 24 h. The therapeutic efficacy of the higher dose of the antinicotinic compound MB327 was slightly higher at the 6 h end point compared to the 24 h end point for soman and tabun intoxication. A higher dose of MB327 increased the therapeutic efficacy of atropine alone for sarin, soman and tabun intoxication, and that of the standard antidotal treatment (atropine and oxime) for sarin and tabun intoxication. The therapeutic efficacy of MB327 was lower than the oxime-based antidotal treatment. To compare the 6 and 24 h end points, the influence of the experimental end point was not observed, with the exception of the higher dose of MB327. In addition, only a negligible beneficial impact of the compound MB327 was observed. Nevertheless, antinicotinics may offer an additional avenue for countering poisoning by nerve agents that are difficult to treat, and synthetic and biological studies towards the development of such novel drugs based on the core bispyridinium structure or other molecular scaffolds should continue.
Journal Article
Chemistry and diplomacy
by
Forman, Jonathan E.
,
van Eerten, Darcy
,
Timperley, Christopher M.
in
Biological & chemical weapons
,
Chemical weapons
,
Chemical Weapons Convention 2017
2018
The Chemical Weapons Convention is a science-based international treaty for the disarmament and non-proliferation of chemical weapons. The Organisation for the Prohibition of Chemical Weapons (OPCW) serves as its implementing body. The treaty bans chemicals weapons, includes a verification mechanism to monitor compliance, and requires scientific and technical expertise for effective implementation. This necessitates a continuous engagement with scientific communities, whether informal or institutionalized (as demonstrated by the Designated Laboratories, Validation Group, and Scientific Advisory Board (SAB), of the OPCW), to ensure operation of the treaty keeps pace with scientific advances, and that enabling opportunities to meet challenges through scientific advances can be seized. The effective use of science for treaty implementation demands scientific literacy for decision making. Herein, the Convention, its scientific basis, need for scientific expertise, and mechanisms through which the OPCW engages scientists, are described. The function of the OPCW SAB, its review of science and technology to advise disarmament and non-proliferation policymakers, and its role in raising awareness of science within the world of international diplomacy, are reviewed.
Journal Article
Toxicity and medical countermeasure studies on the organophosphorus nerve agents VM and VX
by
Graham, Stuart J.
,
Jenner, John
,
Groombridge, Helen J.
in
Chemical Weapons
,
Nerve Agent
,
Percutaneous Penetration
2015
To support the effort to eliminate the Syrian Arab Republic chemical weapons stockpile safely, there was a requirement to provide scientific advice based on experimentally derived information on both toxicity and medical countermeasures (MedCM) in the event of exposure to VM, VX or VM-VX mixtures. Complementary in vitro and in vivo studies were undertaken to inform that advice. The penetration rate of neat VM was not significantly different from that of neat VX, through either guinea pig or pig skin in vitro. The presence of VX did not affect the penetration rate of VM in mixtures of various proportions. A lethal dose of VM was approximately twice that of VX in guinea pigs poisoned via the percutaneous route. There was no interaction in mixed agent solutions which altered the in vivo toxicity of the agents. Percutaneous poisoning by VM responded to treatment with standard MedCM, although complete protection was not achieved.
Journal Article
Metal-organic frameworks: Breaking bad chemicals down
by
Rosseinsky, Matthew J
,
Smith, Martin W
,
Timperley, Christopher M
in
Biological & chemical weapons
,
Catalysis
,
Organic chemicals
2015
Writing in Nature Materials, Joseph Mondloch and co-workers now report a way to destroy chemical warfare agents using a porous metal-organic framework (MOF) called NU-1000 with a specic arrangement of Lewis acid metal oxo units.
Journal Article
Painful chemistry! From barbecue smoke to riot control
by
Riches, James R.
,
Hopkins, Farrha B.
,
Lindsay, Christopher D.
in
2-chlorobenzylidenemalononitrile
,
2016 Spring ConfChem
,
Biological & chemical weapons
2017
Pain! Most humans feel it throughout their lives. The molecular mechanisms underlying the phenomenon are still poorly understood. This is especially true of pain triggered in response to molecules of a certain shape and reactivity present in the environment. Such molecules can interact with the sensory nerve endings of the eyes, nose, throat and lungs to cause irritation that can range from mild to severe. The ability to alert to the presence of such potentially harmful substances has been termed the ‘common chemical sense’ and is thought to be distinct from the senses of smell or taste, which are presumed to have evolved later. Barbecue a burger excessively and you self-experiment. Fatty acids present in the meat break off their glycerol anchor under the thermal stress. The glycerol loses two molecules of water and forms acrolein, whose assault on the eyes is partly responsible for the tears elicited by smoke. Yet the smell and taste of the burger are different experiences. It was this eye-watering character of acrolein that prompted its use as a warfare agent during World War I. It was one of several ‘lachrymators’ deployed to harass, and the forerunner of safer chemicals, such as ‘tear gas’ CS, developed for riot control. The history of development and mechanism of action of some sensory irritants is discussed here in relation to recent advice from the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) on chemicals that conform to the definition of a riot control agent (RCA) under the Chemical Weapons Convention.
Journal Article
Evidence of VX nerve agent use from contaminated white mustard plants
by
Hopkins, Farrha B.
,
Gravett, Matthew R.
,
Webb, Andrew J.
in
Chemical warfare
,
Chemical Weapons
,
Contamination
2014
The Chemical Weapons Convention prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by Member States. Verification of compliance and investigations into allegations of use require accurate detection of chemical warfare agents (CWAs) and their degradation products. Detection of CWAs such as organophosphorus nerve agents in the environment relies mainly upon the analysis of soil. We now present a method for the detection of the nerve agent VX and its hydrolysis products by gas chromatography and liquid chromatography mass spectrometry of ethanol extracts of contaminated white mustard plants (Sinapis alba) which retained the compounds of interest for up to 45 days. VX is hydrolysed by the plants to ethyl methylphosphonic acid and then to methylphosphonic acid. The utility of white mustard as a nerve agent detector and remediator of nerve agent-polluted sites is discussed. The work described will help deter the employment of VX in conflict.
Journal Article
Advice from the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons on isotopically labelled chemicals and stereoisomers in relation to the Chemical Weapons Convention
by
Trifirò, Ferruccio
,
Mikulak, Robert
,
Cariño, Flerida A.
in
Annex on Chemicals
,
Biological & chemical weapons
,
Chemical warfare
2018
The Chemical Weapons Convention (CWC) is an international disarmament treaty that prohibits the development, stockpiling and use of chemical weapons. This treaty has 193 States Parties (nations for which the treaty is binding) and entered into force in 1997. The CWC contains schedules of chemicals that have been associated with chemical warfare programmes. These scheduled chemicals must be declared by the States that possess them and are subject to verification by the Organisation for the Prohibition of Chemical Weapons (OPCW, the implementing body of the CWC). Isotopically labelled and stereoisomeric variants of the scheduled chemicals have presented ambiguities for interpretation of the requirements of treaty implementation, and advice was sought from the OPCW’s Scientific Advisory Board (SAB) in 2016. The SAB recommended that isotopically labelled compounds or stereoisomers related to the parent compound specified in a schedule should be interpreted as belonging to the same schedule. This advice should benefit scientists and diplomats from the CWC’s State Parties to help ensure a consistent approach to their declarations of scheduled chemicals (which in turn supports both the correctness and completeness of declarations under the CWC). Herein, isotopically labelled and stereoisomeric variants of CWC-scheduled chemicals are reviewed, and the impact of the SAB advice in influencing a change to national licensing in one of the State Parties is discussed. This outcome, an update to national licensing governing compliance to an international treaty, serves as an example of the effectiveness of science diplomacy within an international disarmament treaty.
Journal Article
Innovative technologies for chemical security
by
Trifirò, Ferruccio
,
Mikulak, Robert
,
Cariño, Flerida A.
in
Biological & chemical weapons
,
Chemical weapons
,
Chemical Weapons Convention 2017
2018
Advances across the chemical and biological (life) sciences are increasingly enabled by ideas and tools from sectors outside these disciplines, with information and communication technologies playing a key role across 21
century scientific development. In the face of rapid technological change, the Organisation for the Prohibition of Chemical Weapons (OPCW), the implementing body of the Chemical Weapons Convention (“the Convention”), seeks technological opportunities to strengthen capabilities in the field of chemical disarmament. The OPCW Scientific Advisory Board (SAB) in its review of developments in science and technology examined the potential uses of emerging technologies for the implementation of the Convention at a workshop entitled “Innovative Technologies for Chemical Security”, held from 3 to 5 July 2017, in Rio de Janeiro, Brazil. The event, organized in cooperation with the International Union of Pure and Applied Chemistry (IUPAC), the National Academies of Science, Engineering and Medicine of the United States of America, the Brazilian Academy of Sciences, and the Brazilian Chemical Society, was attended by 45 scientists and engineers from 22 countries. Their insights into the use of innovative technological tools and how they might benefit chemical disarmament and non-proliferation informed the SAB’s report on developments in science and technology for the Fourth Review Conference of the Convention (to be held in November 2018), and are described herein, as are recommendations that the SAB submitted to the OPCW Director-General and the States Parties of the Convention. It is concluded that technologies exist or are under development that could be used for investigations, contingency, assistance and protection, reducing risks to inspectors, and enhancing sampling and analysis.
Journal Article