Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
685
result(s) for
"Ting, Jonathan T"
Sort by:
Adeno-associated viral vectors for functional intravenous gene transfer throughout the non-human primate brain
by
Arokiaraj, Cynthia M.
,
Tian, Lin
,
Flytzanis, Nicholas C.
in
631/61
,
631/61/350
,
631/61/350/59
2023
Crossing the blood–brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood–brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.
Crossing the blood–brain barrier in primates is a major obstacle to gene delivery in the brain. Here an adeno-associated virus variant (AAV.CAP-Mac) is identified and demonstrated for crossing the blood–brain barrier and delivering gene sequences to the brain of different non-human primates species.
Journal Article
Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles
by
Siegle, Joshua H
,
Feng, Guoping
,
Moore, Christopher I
in
631/378/1697
,
631/378/2629
,
692/700/1421/65
2011
Using optogenetics and multi-electrode recording in behaving mice, the authors find that briefly driving the thalamic reticular nucleus (TRN) switches thalamocortical firing mode and generates neocortical spindles, which have been implicated in memory and disease. These findings provide causal support for the idea that the TRN is involved in state regulation and introduce a new model for addressing the role of spindles in behavior.
The thalamic reticular nucleus (TRN) is hypothesized to regulate neocortical rhythms and behavioral states. Using optogenetics and multi-electrode recording in behaving mice, we found that brief selective drive of TRN switched the thalamocortical firing mode from tonic to bursting and generated state-dependent neocortical spindles. These findings provide causal support for the involvement of the TRN in state regulation
in vivo
and introduce a new model for addressing the role of this structure in behavior.
Journal Article
Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates
2023
Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.
Delivering genes to and across the brain vasculature efficiently and specifically across species remains challenging. Here, the authors show that endothelial-specific AAVs with serotype flexibility enable redosing and transform the brain vasculature into an in vivo biofactory in genetically diverse rodents. In primates, these vectors cross the blood-brain-barrier and show broad tropism.
Journal Article
Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons
2020
von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human temporal cortex, but with a strikingly specific regional signature. Together these results suggest that VENs are a regionally distinctive type of ET neuron. Additionally, we describe the first patch clamp recordings of VENs from neurosurgically-resected tissue that show distinctive intrinsic membrane properties relative to neighboring pyramidal neurons.
Little is known about von Economo neurons, which have been described in a subset of mammals and appear to be selectively lost in several human neurological diseases. Here, authors reveal the gene expression profile of these cells and show that they are likely long-distance projection neurons.
Journal Article
Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues
by
Jiang, Xiaoyun
,
Perlmutter, Steven
,
Chronopoulos, Chris
in
Animals
,
Brain - cytology
,
Brain - diagnostic imaging
2025
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1.5 µm×1.5 µm×3 µm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/s. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 375 nm lateral and 750 nm axial resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Journal Article
Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond
by
Feng, Guoping
,
Ting, Jonathan T.
in
Artificial chromosomes
,
Bacterial artificial chromosomes
,
Brain research
2014
The development and application of diverse BAC transgenic rodent lines has enabled rapid progress for precise molecular targeting of genetically-defined cell types in the mammalian central nervous system. These transgenic tools have played a central role in the optogenetic revolution in neuroscience. Indeed, an overwhelming proportion of studies in this field have made use of BAC transgenic Cre driver lines to achieve targeted expression of optogenetic probes in the brain. In addition, several BAC transgenic mouse lines have been established for direct cell-type specific expression of Channelrhodopsin-2 (ChR2). While the benefits of these new tools largely outweigh any accompanying challenges, many available BAC transgenic lines may suffer from confounds due in part to increased gene dosage of one or more \"extra\" genes contained within the large BAC DNA sequences. Here we discuss this under-appreciated issue and propose strategies for developing the next generation of BAC transgenic lines that are devoid of extra genes. Furthermore, we provide evidence that these strategies are simple, reproducible, and do not disrupt the intended cell-type specific transgene expression patterns for several distinct BAC clones. These strategies may be widely implemented for improved BAC transgenesis across diverse disciplines.
Journal Article
Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization
by
Sorensen, Staci
,
Gouwens, Nathan W
,
Budzillo, Agata
in
Animals
,
Brain
,
Brain slice preparation
2021
The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized the importance of extracting the nucleus for transcriptomic success and maximizing membrane integrity during nucleus extraction for morphology success. The protocol is generalizable to different species and brain regions, as demonstrated by capturing multimodal data from human and macaque brain slices. The protocol, analysis and acquisition software are compiled at https://githubcom/AllenInstitute/patchseqtools . This resource can be used by individual labs to generate data across diverse mammalian species and that is compatible with large publicly available Patch-seq datasets.
Journal Article
Genes associated with cognitive ability and HAR show overlapping expression patterns in human cortical neuron types
by
Smith, Kimberly
,
Heistek, Tim S.
,
de Kock, Christiaan P. J.
in
38/91
,
631/378/2583
,
631/378/2649
2023
GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure. We find that these gene sets are preferentially expressed in L3 pyramidal neurons in middle temporal gyrus (MTG). Furthermore, neurons with higher expression had larger total dendritic length (TDL) and faster action potential (AP) kinetics, properties previously linked to intelligence. We identify a subset of genes associated with TDL or AP kinetics with predominantly synaptic functions and high abundance of HARs.
Using transcriptomic data from human brain cells, the authors show that the expression patterns of the genes implicated in human cognition and brain evolution overlap in specific neuron types, and relate to cellular function and structure.
Journal Article
Improving the Efficacy and Accessibility of Intracranial Viral Vector Delivery in Non-Human Primates
by
Griggs, Devon J.
,
Au, Wing Yun
,
Garcia, Aaron D.
in
Brain
,
convection-enhanced delivery
,
Experiments
2022
Non-human primates (NHPs) are precious resources for cutting-edge neuroscientific research, including large-scale viral vector-based experimentation such as optogenetics. We propose to improve surgical outcomes by enhancing the surgical preparation practices of convection-enhanced delivery (CED), which is an efficient viral vector infusion technique for large brains such as NHPs’. Here, we present both real-time and next-day MRI data of CED in the brains of ten NHPs, and we present a quantitative, inexpensive, and practical bench-side model of the in vivo CED data. Our bench-side model is composed of food coloring infused into a transparent agar phantom, and the spread of infusion is optically monitored over time. Our proposed method approximates CED infusions into the cortex, thalamus, medial temporal lobe, and caudate nucleus of NHPs, confirmed by MRI data acquired with either gadolinium-based or manganese-based contrast agents co-infused with optogenetic viral vectors. These methods and data serve to guide researchers and surgical team members in key surgical preparations for intracranial viral delivery using CED in NHPs, and thus improve expression targeting and efficacy and, as a result, reduce surgical risks.
Journal Article
Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms
by
Lambert, Talley J
,
Sullivan, Jane M
,
Ting, Jonathan T
in
Action potentials
,
Alzheimer disease
,
Alzheimer's disease
2007
Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Aβ because expression of mutant APP incapable of producing Aβ did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Aβ-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.
Journal Article