Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24,208
result(s) for
"Ting Zhang"
Sort by:
Tumor-Associated Macrophages in Tumor Immunity
by
Yu, Yinda
,
Zhang, Ting
,
Pan, Yueyun
in
Angiogenesis
,
Animals
,
Antibody-dependent cell-mediated cytotoxicity
2020
Tumor-associated macrophages (TAMs) represent one of the main tumor-infiltrating immune cell types and are generally categorized into either of two functionally contrasting subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. The former typically exerts anti-tumor functions, including directly mediate cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) to kill tumor cells; the latter can promote the occurrence and metastasis of tumor cells, inhibit T cell-mediated anti-tumor immune response, promote tumor angiogenesis, and lead to tumor progression. Both M1 and M2 macrophages have high degree of plasticity and thus can be converted into each other upon tumor microenvironment changes or therapeutic interventions. As the relationship between TAMs and malignant tumors becoming clearer, TAMs have become a promising target for developing new cancer treatment. In this review, we summarize the origin and types of TAMs, TAMs interaction with tumors and tumor microenvironment, and up-to-date treatment strategies targeting TAMs.
Journal Article
Progress on the Studies of the Key Enzymes of Ginsenoside Biosynthesis
by
Hu, Zong-Feng
,
Gu, An-Di
,
Zhu, Ping
in
Alkyl and Aryl Transferases - genetics
,
Alkyl and Aryl Transferases - metabolism
,
Biosynthesis
2018
As the main bioactive constituents of Panax species, ginsenosides possess a wide range of notable medicinal effects such as anti-cancer, anti-oxidative, antiaging, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, the increasing medical demand for ginsenosides cannot be met due to the limited resource of Panax species and the low contents of ginsenosides. In recent years, biotechnological approaches have been utilized to increase the production of ginsenosides by regulating the key enzymes of ginsenoside biosynthesis, while synthetic biology strategies have been adopted to produce ginsenosides by introducing these genes into yeast. This review summarizes the latest research progress on cloning and functional characterization of key genes dedicated to the production of ginsenosides, which not only lays the foundation for their application in plant engineering, but also provides the building blocks for the production of ginsenosides by synthetic biology.
Journal Article
A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer
2017
Paclitaxel (PTX) is among the most commonly used first-line drugs for cancer chemotherapy. However, its poor water solubility and indiscriminate distribution in normal tissues remain clinical challenges. Here we design and synthesize a highly water-soluble nucleolin aptamer-paclitaxel conjugate (NucA-PTX) that selectively delivers PTX to the tumor site. By connecting a tumor-targeting nucleolin aptamer (NucA) to the active hydroxyl group at 2′ position of PTX via a cathepsin B sensitive dipeptide bond, NucA-PTX remains stable and inactive in the circulation. NucA facilitates the uptake of the conjugated PTX specifically in tumor cells. Once inside cells, the dipeptide bond linker of NucA-PTX is cleaved by cathepsin B and then the conjugated PTX is released for action. The NucA modification assists the selective accumulation of the conjugated PTX in ovarian tumor tissue rather than normal tissues, and subsequently resulting in notably improved antitumor activity and reduced toxicity.
Paclitaxel, a first line chemotherapeutic drug, suffers from poor water solubility and low tissue selectivity. Here, the authors report a water-soluble nucleolin aptamer-paclitaxel conjugate that selectively accumulates in ovarian tumor issues displaying reduced toxicity and improved activity profiles.
Journal Article
Harnessing plant–microbe interactions: strategies for enhancing resilience and nutrient acquisition for sustainable agriculture
by
Odedishemi-Ajibade, Fidelis
,
Yusuf, Abdulhamid
,
Li, Min
in
Agricultural management
,
Agricultural practices
,
Agricultural production
2025
The rhizosphere, a biologically active zone where plant roots interface with soil, plays a crucial role in enhancing plant health, resilience, and stress tolerance. As a key component in achieving Sustainable Development Goal 2, the rhizosphere is increasingly recognized for its potential to promote sustainable agricultural productivity. Engineering the rhizosphere microbiome is emerging as an innovative strategy to foster plant growth, improve stress adaptation, and restore soil health while mitigating the detrimental effects of conventional farming practices. This review synthesizes recent advancements in omics technologies, sequencing tools, and synthetic microbial communities (SynComs), which have provided insights into the complex interactions between plants and microbes. We examine the role of root exudates, composed of organic acids, amino acids, sugars, and secondary metabolites, as biochemical cues that shape beneficial microbial communities in the rhizosphere. The review further explores how advanced omics techniques like metagenomics and metabolomics are employed to elucidate the mechanisms by which root exudates influence microbial communities and plant health. Tailored SynComs have shown promising potential in enhancing plant resilience against both abiotic stresses (e.g., drought and salinity) and biotic challenges (e.g., pathogens and pests). Integration of these microbiomes with optimized root exudate profiles has been shown to improve nutrient cycling, suppress diseases, and alleviate environmental stresses, thus contributing to more sustainable agricultural practices. By leveraging multi-disciplinary approaches and optimizing root exudate profiles, ecological engineering of plant-microbiome interactions presents a sustainable pathway for boosting crop productivity. This approach also aids in managing soil-borne diseases, reducing chemical input dependency, and aligning with Sustainable Development Goals aimed at global food security and ecological sustainability. The ongoing research into rhizosphere microbiome engineering offers significant promise for ensuring long-term agricultural productivity while preserving soil and plant health for future generations.
Journal Article
Involvement of CXCR4 in Normal and Abnormal Development
by
Kawaguchi, Nanako
,
Nakanishi, Toshio
,
Zhang, Ting-Ting
in
Animals
,
Blood platelets
,
Bone marrow
2019
CXC motif chemokine receptor type 4 (CXCR4) is associated with normal and abnormal development, including oncogenesis. The ligand of CXCR4 is stromal cell-derived factor (SDF), also known as CXC motif ligand (CXCL) 12. Through the SDF-1/CXCR4 axis, both homing and migration of hematopoietic (stem) cells are regulated through niches in the bone marrow. Outside of the bone marrow, however, SDF-1 can recruit CXCR4-positive cells from the bone marrow. SDF/CXCR4 has been implicated in the maintenance and/or differentiation of stemness, and tissue-derived stem cells can be associated with SDF-1 and CXCR4 activity. CXCR4 plays a role in multiple pathways involved in carcinogenesis and other pathologies. Here, we summarize reports detailing the functions of CXCR4. We address the molecular signature of CXCR4 and how this molecule and cells expressing it are involved in either normal (maintaining stemness or inducing differentiation) or abnormal (developing cancer and other pathologies) events. As a constituent of stem cells, the SDF-1/CXCR4 axis influences downstream signal transduction and the cell microenvironment.
Journal Article
Stable Zinc-Based Metal-Organic Framework Photocatalyst for Effective Visible-Light-Driven Hydrogen Production
by
Ma, Lu-Fang
,
Zhao, Chen-Chen
,
Zhang, Ting-Ting
in
Decomposition
,
fluorescence emission
,
Hydrogen
2022
Herein, a new Zn-MOF material, [Zn(L1)(L2)], 1, was built successfully through a one-pot solvothermal method. The 3D MOF structure was determined by Single X-ray diffraction analysis, IR, and elemental analysis. A series of PXRD tests of 1 after being immersed in different solvents and pH solutions demonstrated the good stability of 1. Interestingly, this material displayed high catalytic activity for the visible-light-driven hydrogen generation under the illumination of white LED in pure water or a mixture of DMF and H2O without additional photosensitizers and cocatalysts. Besides, the studies also showed that the catalytic activity changed constantly as well as the solvent ratio adjustment of DMF and H2O from 4:6 to 2:8. Additionally, the catalytic activity reached the best value (743 μmol g−1 h−1) when the solvent ratio was 4:6. The heterogeneous nature and recyclability of the MOF catalyst, as well as several factors that affect the catalytic activity, were investigated and described in detail. Moreover, the photocatalytic mechanism for the hydrogen generation of 1 was also proposed based on the fluorescence spectra and UV-vis absorption.
Journal Article
Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases
2019
Cardiovascular and metabolic disease (CMD) remains a main cause of premature death worldwide. Berberine (BBR), a lipid-lowering botanic compound with diversified potency against metabolic disorders, is a promising candidate for ameliorating CMD. The liver is the target of BBR so that liver-site accumulation could be important for fulfilling its therapeutic effect. In this study a rational designed micelle (CTA-Mic) consisting of α-tocopheryl hydrophobic core and on-site detachable polyethylene glycol-thiol shell is developed for effective liver deposition of BBR. The bio-distribution analysis proves that the accumulation of BBR in liver is increased by 248.8% assisted by micelles. Up-regulation of a range of energy-related genes is detectable in the HepG2 cells and in vivo. In the high fat diet-fed mice, BBR-CTA-Mic intervention remarkably improves metabolic profiles and reduces the formation of aortic arch plaque. Our results provide proof-of-concept for a liver-targeting strategy to ameliorate CMD using natural medicines facilitated by Nano-technology.
Berberine has lipid-lowering effects and other metabolic benefits, but it presents with poor bioavailability. Here the authors conjugate berberine to liver-targeting nanoparticles, and show increased accumulation of berberine in the liver, improved metabolic profiles and reduced atherosclerotic plaques in mice.
Journal Article
TRIB3 promotes MYC-associated lymphoma development through suppression of UBE3B-mediated MYC degradation
2020
The transcription factor MYC is deregulated in almost all human cancers, especially in aggressive lymphomas, through chromosomal translocation, amplification, and transcription hyperactivation. Here, we report that high expression of tribbles homologue 3 (TRIB3) positively correlates with elevated MYC expression in lymphoma specimens;
TRIB3
deletion attenuates the initiation and progression of MYC-driven lymphoma by reducing MYC expression. Mechanistically, TRIB3 interacts with MYC to suppress E3 ubiquitin ligase UBE3B-mediated MYC ubiquitination and degradation, which enhances MYC transcriptional activity, causing high proliferation and self-renewal of lymphoma cells. Use of a peptide to disturb the TRIB3-MYC interaction together with doxorubicin reduces the tumor burden in
Myc
Eμ
mice and patient-derived xenografts. The pathophysiological relevance of UBE3B, TRIB3 and MYC is further demonstrated in human lymphoma. Our study highlights a key mechanism for controlling MYC expression and a potential therapeutic option for treating lymphomas with high TRIB3-MYC expression.
c-MYC is often deregulated in human cancers including lymphomas. Here, the authors show that a member of the pseudokinase family, tribbles homologue 3 (TRIB3), interacts with c-MYC to suppress c-MYC ubiquitination and degradation, leading to increased proliferation and self-renewal of lymphoma cells.
Journal Article
Advanced hybrid LSTM-transformer architecture for real-time multi-task prediction in engineering systems
2024
In the field of engineering systems—particularly in underground drilling and green stormwater management—real-time predictions are vital for enhancing operational performance, ensuring safety, and increasing efficiency. Addressing this niche, our study introduces a novel LSTM-transformer hybrid architecture, uniquely specialized for multi-task real-time predictions. Building on advancements in attention mechanisms and sequence modeling, our model integrates the core strengths of LSTM and Transformer architectures, offering a superior alternative to traditional predictive models. Further enriched with online learning, our architecture dynamically adapts to variable operational conditions and continuously incorporates new field data. Utilizing knowledge distillation techniques, we efficiently transfer insights from larger, pretrained networks, thereby achieving high predictive accuracy without sacrificing computational resources. Rigorous experiments on sector-specific engineering datasets validate the robustness and effectiveness of our approach. Notably, our model exhibits clear advantages over existing methods in terms of predictive accuracy, real-time adaptability, and computational efficiency. This work contributes a pioneering predictive framework for targeted engineering applications, offering actionable insights into.
Journal Article
The e-Index, Complementing the h-Index for Excess Citations
The h-index has already been used by major citation databases to evaluate the academic performance of individual scientists. Although effective and simple, the h-index suffers from some drawbacks that limit its use in accurately and fairly comparing the scientific output of different researchers. These drawbacks include information loss and low resolution: the former refers to the fact that in addition to h(2) citations for papers in the h-core, excess citations are completely ignored, whereas the latter means that it is common for a group of researchers to have an identical h-index.
To solve these problems, I here propose the e-index, where e(2) represents the ignored excess citations, in addition to the h(2) citations for h-core papers. Citation information can be completely depicted by using the h-index together with the e-index, which are independent of each other. Some other h-type indices, such as a and R, are h-dependent, have information redundancy with h, and therefore, when used together with h, mask the real differences in excess citations of different researchers.
Although simple, the e-index is a necessary h-index complement, especially for evaluating highly cited scientists or for precisely comparing the scientific output of a group of scientists having an identical h-index.
Journal Article