Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Tingle, Malcolm"
Sort by:
Comparison of Sinus Deposition from an Aqueous Nasal Spray and Pressurised MDI in a Post-Endoscopic Sinus Surgery Nasal Replica
BackgroundOptimising intranasal distribution and retention of topical therapy is essential for effectively managing patients with chronic rhinosinusitis, including those that have had functional endoscopic sinus surgery (FESS). This study presents a new technique for quantifying in vitro experiments of fluticasone propionate deposition within the sinuses of a 3D-printed model from a post-FESS patient.MethodsCircular filter papers were placed on the sinus surfaces of the model. Deposition of fluticasone on the filter paper was quantified using high-performance liquid chromatography (HPLC) assay-based techniques. The deposition patterns of two nasal drug delivery devices, an aqueous nasal spray (Flixonase) and metered dose inhaler (Flixotide), were compared. The effects of airflow (0 L/min vs. 12 L/min) and administration angle (30° vs. and 45°) were evaluated.ResultsInhaled airflow made little difference to sinus deposition for either device. A 45° administration angle improved frontal sinus deposition with the nasal spray and both ethmoidal and sphenoidal deposition with the inhaler. The inhaler provided significantly better deposition within the ethmoid sinuses (8.5x) and within the maxillary sinuses (3.9x) compared with the nasal spray under the same conditions.ConclusionIn the post-FESS model analysed, the inhaler produced better sinus deposition overall compared with the nasal spray. The techniques described can be used and adapted for in vitro performance testing of different drug formulations and intranasal devices under different experimental conditions. They can also help validate computational fluid dynamics modelling and in vivo studies.
A pharmacokinetic framework describing antibiotic adsorption to cardiopulmonary bypass devices
Cardiopulmonary bypass (CPB) can alter pharmacokinetic (PK) parameters and the drug may adsorb to the CPB device, altering exposure. Cefazolin is a beta‐lactam antibiotic used for antimicrobial prophylaxis during cardiac surgery supported by CPB. Adsorption of cefazolin could result in therapeutic failure. An ex vivo study was undertaken using CPB devices primed and then dosed with cefazolin and samples were obtained over 1 hour of recirculation. Twelve experimental runs were conducted using different CPB device sizes (neonate, infant, child, and adult), device coatings (Xcoating™, Rheoparin®, PH.I.S.I.O), and priming solutions. The time course of saturable binding, using Bmax (binding capacity), Kd (dissociation constant), and T2off (half‐time of dissociation), described cefazolin adsorption. Bmax estimates for the device sizes were neonate 40.0 mg (95% CI 24.3, 67.4), infant 48.6 mg (95% CI 5.97, 80.2), child 77.8 mg (95% CI 54.9, 103), and adult 196 mg (95% CI 191, 199). The Xcoating™ Kd estimate was 139 mg/L (95% CI 27.0, 283) and the T2off estimate was 98.4 min (95% CI 66.8, 129). The Rheoparin® and PH.I.S.I.O coatings had similar binding parameters with Kd and T2off estimates of 0.169 mg/L (95% CI 0.01, 1.99) and 4.94 min (95% CI 0.17, 59.4). The Bmax was small (< 10%) relative to a typical total patient dose during cardiac surgery supported by CPB. A dose adjustment for cefazolin based solely on drug adsorption is not required. This framework could be extended to other PK studies involving CPB.
Varenicline improves motor and cognitive symptoms in early Huntington's disease
The aim of this study was to describe the effects of varenicline, a smoking cessation aid that acts as a nicotinic agonist, on cognitive function in patients with early clinical Huntington's disease (HD) who were current smokers. Three gene-positive patients transitioning to symptomatic HD were evaluated using the Unified Huntington's Disease Rating Scale part I and III (motor and behavioral subscales) at baseline and after 4 weeks of treatment. Cognitive function was assessed using a touch screen computer-based neurocognitive test battery (IntegNeuro ). Varenicline (1 mg twice daily) significantly improved performance in executive function and emotional recognition tasks. Our case reports describe no clinically significant adverse effects and suggest that varenicline improves aspects of cognitive function in patients with early HD. A randomized controlled study is now underway.
Satraplatin activation by haemoglobin, cytochrome C and liver microsomes in vitro
Satraplatin is thought to require reduction to a reactive Pt(II) complex (JM118) before exerting chemotherapeutic activity. In this study, we investigated the role of heme proteins in this reductive activation of satraplatin. Satraplatin was incubated in solution with heme proteins and liver microsomes. The oxidation state of heme iron was monitored by visible absorption spectrometry. Satraplatin and JM118 were detected using a sensitive and specific HPLC-ICPMS assay. Satraplatin was stable in solutions containing haemoglobin, cytochrome c, glutathione, liver microsomes or NADH alone. However, in solutions containing haemoglobin plus NADH, satraplatin disappeared with a half-life of 35.8 mins. Under these conditions, satraplatin was reduced to JM118 and haemoglobin was oxidised to methaemoglobin. The reaction between haemoglobin and satraplatin was inhibited by carbon monoxide or by cooling the reaction solution. Cytochrome c and liver microsomes also reduced satraplatin to JM118 in a manner that depended upon the presence of NADH and was inhibited by carbon monoxide. This study has identified a mechanism of satraplatin activation involving metal-containing redox proteins and the transfer of electrons to the Pt(IV) drug from protein-complexed metal ions. Heme proteins may act by this mechanism as reducing agents for the activation of satraplatin in vivo.
Rapid biotransformation of satraplatin by human red blood cells in vitro
Satraplatin is an orally administered platinum complex that has demonstrated clinical activity and manageable toxicity in phase II trials. The presence of several different platinum-containing species and very little intact parent drug in the systemic circulation indicates extensive biotransformation of satraplatin in vivo. To investigate the basis for the biotransformation of satraplatin, studies were carried out into the stability of the drug in whole blood and various other biological fluids in vitro. Concentrations of satraplatin and platinum-containing biotransformation products in incubation fluids were measured using high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). The fate of satraplatin-derived platinum in whole blood in vitro was determined by analysis of blood fractions for platinum by ICPMS. In fresh human whole blood in vitro, satraplatin concentrations fell very rapidly, resulting in a half-life for the disappearance of the drug of only 6.3 min (95% CI, 5.9 to 6.7 min). After the addition of drug to red blood cells that had been prepared from whole blood and suspended in 0.9% NaCl, satraplatin also disappeared very rapidly. Satraplatin was much more stable in fresh human plasma (t(1/2) 5.3 h) and fully supplemented cell culture medium (t(1/2) 22 h). Two new platinum-containing species appeared on HPLC-ICPMS platinum chromatograms of methanol extracts of plasma after the addition of the drug to whole blood. Their identities were assigned as the platinum(II) complex known as JM118 and a platinated protein with similar electrophoretic mobility to that of serum albumin. During the incubation of satraplatin in blood, platinum associated with red blood cells at an accumulation half-life of 9.5 min (95% CI, 7.1 to 14.2 min). At equilibrium, 62% of the added platinum was associated with red blood cells in a form that was not exchangeable in methanol or 0.9% NaCl. The rapid disappearance of satraplatin from human blood in vitro depends upon the presence of red blood cells. Generation of JM118 and irreversibly bound membrane- and protein-associated platinum indicates that satraplatin undergoes rapid biotransformation in whole blood.
In vivo interactions between BZP and TFMPP (party pill drugs)
Explores potential drug-drug interactions between benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) by comparing the metabolism and pharmacokinetics of BZP and TFMPP, when taken together, with previously published data on their individual metabolism and pharmacokinetics. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.
Ethnic disparity in clozapine dosing and cardiotoxicity in New Zealand
Investigates ethnic disparities in the treatment and incidence of cardiotoxicity for patients prescribed clozapine in New Zealand. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.
A difference between the rat and mouse in the pharmacokinetic interaction of 5,6-dimethylxanthenone-4-acetic acid with thalidomide
Coadministration of thalidomide, cyproheptadine or diclofenac has been shown to increase the area under the plasma concentration-time curve (AUC) of the novel antitumour agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in mice. The aim of this study was to further investigate these pharmacokinetic DMXAA-drug interactions in the rat model. The effects of coadministration of L-thalidomide, cyproheptadine or diclofenac on the pharmacokinetics of DMXAA were investigated in male Wistar Kyoto rats. The effects of L-thalidomide, cyproheptadine and diclofenac on microsomal metabolism and plasma protein binding of DMXAA were also investigated. No significant alteration in the plasma concentration profile for DMXAA was observed following L-thalidomide pretreatment in rats. In contrast, when combined with diclofenac or cyproheptadine, the plasma AUC of DMXAA was significantly (P<0.05) increased by 48% and 88% and the T1/2 by 36% and 107%, respectively, compared to controls. Both diclofenac and cyproheptadine at 500 microM caused a significant inhibition of DMXAA metabolism in rat liver microsomes. In contrast, L-thalidomide had no or little inhibitory effect on DMXAA metabolism in rat liver microsomes except for causing a 32% decrease in 6methylhydroxylation at 500 microM. None of the drugs had a significant effect on the plasma protein binding of DMXAA in the rat. These studies showed that coadministration of L-thalidomide did not alter the plasma DMXAA AUC in rats, in contrast to previous studies in mice, whereas diclofenac and cyproheptadine significantly reduced the plasma clearance of DMXAA in rats in a similar manner to their effect in mice. The cause of the species difference in the pharmacokinetic response to thalidomide by DMXAA is unknown, and indicates difficulties in predicting the outcome of such a combination in patients.
Pharmacokinetic Properties of Adenosine Amine Congener in Cochlear Perilymph after Systemic Administration
Noise-induced hearing loss (NIHL) is a global health problem affecting over 5% of the population worldwide. We have shown previously that acute noise-induced cochlear injury can be ameliorated by administration of drugs acting on adenosine receptors in the inner ear, and a selective A1 adenosine receptor agonist adenosine amine congener (ADAC) has emerged as a potentially effective treatment for cochlear injury and resulting hearing loss. This study investigated pharmacokinetic properties of ADAC in rat perilymph after systemic (intravenous) administration using a newly developed liquid chromatography-tandem mass spectrometry detection method. The method was developed and validated in accordance with the USA FDA guidelines including accuracy, precision, specificity, and linearity. Perilymph was sampled from the apical turn of the cochlea to prevent contamination with the cerebrospinal fluid. ADAC was detected in cochlear perilymph within two minutes following intravenous administration and remained in perilymph above its minimal effective concentration for at least two hours. The pharmacokinetic pattern of ADAC was significantly altered by exposure to noise, suggesting transient changes in permeability of the blood-labyrinth barrier and/or cochlear blood flow. This study supports ADAC development as a potential clinical otological treatment for acute sensorineural hearing loss caused by exposure to traumatic noise.
In vitro and in vivo kinetic interactions of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid with thalidomide and diclofenac
Previous studies have demonstrated that coadministration of L-thalidomide with the novel antitumour agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) results in an increased area under the plasma concentration-time curve (AUC) of DMXAA, suggesting an explanation for the observed increase in the antitumour activity. The aims of this study were to investigate the effects of L-thalidomide on the in vitro metabolism of DMXAA in mouse and human liver microsomes using diclofenac as positive control, to examine the effects of L-thalidomide and diclofenac on the plasma protein binding of DMXAA in vitro, and to investigate whether the in vivo interactions can be predicted from in vitro data, particularly in humans. Mouse and human liver microsomes were used to investigate the effects of L-thalidomide and diclofenac on DMXAA metabolism. The resulting in vitro data were extrapolated to predict in vivo changes in DMXAA, which were then compared with the results of in vivo mouse pharmacokinetic interaction studies. The protein binding of DMXAA in mouse and human plasma was determined using ultrafiltration followed by HPLC. Diclofenac at 100 microM caused significant inhibition of glucuronidation (> 70%) and 6-methylhydroxylation (> 54%) of DMXAA in mouse and human liver microsomes. In vivo diclofenac (100 mg/kg i.p.) resulted in a 24% and 31% increase in the plasma DMXAA AUC, and a threefold increase in T1/2 (P < 0.05) in male and female mice, respectively. In contrast, L-thalidomide at 100 microM had no inhibitory effect on DMXAA metabolism in vitro in either species, except for a decrease of about 25% in 6-methylhydroxylation in mice. L-Thalidomide at 500 microM resulted in further significant decreases in 6-methylhydroxylation in mice (30-60%) and human (30%) microsomes. Coadministration of L-thalidomide in male mice resulted in a 23% increase in DMXAA AUC and a twofold increase in T1/2 (P < 0.05). Neither L-thalidomide nor diclofenac at 50 or 500 microM had any significant effect on the in vitro plasma protein binding of DMXAA (500 microM) in mouse or human plasma. Based on our in vitro inhibition studies, we predicted a 20% increase in DMXAA AUC in mice with concomitant diclofenac, but little or no effect (< 5%) with L-thalidomide. Both L-thalidomide and diclofenac increased the plasma DMXAA AUC in mice. In the case of diclofenac, this appeared to be due to direct competitive inhibition of DMXAA metabolism, but this mechanism does not appear to be appropriate for L-thalidomide. From the in vitro human inhibition studies, it appears unlikely that concurrent diclofenac will cause an increase in the plasma AUC of DMXAA in patients. However, the effect of L-thalidomide on DMXAA could not be readily predicted from the in vitro data. Our study demonstrated that a predictive model based on direct inhibition of metabolism is appropriate for diclofenac-DMXAA interactions, but is inappropriate for the prediction of L-thalidomide-DMXAA interactions in mice and humans in vivo.