Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
116 result(s) for "Tishkoff, Sarah A."
Sort by:
Going global by adapting local: A review of recent human adaptation
The spread of modern humans across the globe has led to genetic adaptations to diverse local environments. Recent developments in genomic technologies, statistical analyses, and expanded sampled populations have led to improved identification and fine-mapping of genetic variants associated with adaptations to regional living conditions and dietary practices. Ongoing efforts in sequencing genomes of indigenous populations, accompanied by the growing availability of \"-omics\" and ancient DNA data, promises a new era in our understanding of recent human evolution and the origins of variable traits and disease risks.
Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
Genetic studies of both the human host and Mycobacterium tuberculosis (MTB) demonstrate independent association with tuberculosis (TB) risk. However, neither explains a large portion of disease risk or severity. Based on studies in other infectious diseases and animal models of TB, we hypothesized that the genomes of the two interact to modulate risk of developing active TB or increasing the severity of disease, when present. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which there were 3 MTB lineages of which L4-Ugandan (L4.6) is the most recent. TB severity, measured using the Bandim TBscore, was modeled as a function of host SNP genotype, MTB lineage, and their interaction, within two independent cohorts of TB cases, N = 113 and 121. No association was found between lineage and severity, but association between multiple polymorphisms in IL12B and TBscore was replicated in two independent cohorts (most significant rs3212227, combined p = 0.0006), supporting previous associations of IL12B with TB susceptibility. We also observed significant interaction between a single nucleotide polymorphism (SNP) in SLC11A1 and the L4-Ugandan lineage in both cohorts (rs17235409, meta p = 0.0002). Interestingly, the presence of the L4-Uganda lineage in the presence of the ancestral human allele associated with more severe disease. These findings demonstrate that IL12B is associated with severity of TB in addition to susceptibility, and that the association between TB severity and human genetics can be due to an interaction between genes in the two species, consistent with host-pathogen coevolution in TB.
African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations
Background Africa is the origin of modern humans within the past 300 thousand years. To infer the complex demographic history of African populations and adaptation to diverse environments, we sequenced the genomes of 92 individuals from 44 indigenous African populations. Results Genetic structure analyses indicate that among Africans, genetic ancestry is largely partitioned by geography and language, though we observe mixed ancestry in many individuals, consistent with both short- and long-range migration events followed by admixture. Phylogenetic analysis indicates that the San genetic lineage is basal to all modern human lineages. The San and Niger-Congo, Afroasiatic, and Nilo-Saharan lineages were substantially diverged by 160 kya (thousand years ago). In contrast, the San and Central African rainforest hunter-gatherer (CRHG), Hadza hunter-gatherer, and Sandawe hunter-gatherer lineages were diverged by ~ 120–100 kya. Niger-Congo, Nilo-Saharan, and Afroasiatic lineages diverged more recently by ~ 54–16 kya. Eastern and western CRHG lineages diverged by ~ 50–31 kya, and the western CRHG lineages diverged by ~ 18–12 kya. The San and CRHG populations maintained the largest effective population size compared to other populations prior to 60 kya. Further, we observed signatures of positive selection at genes involved in muscle development, bone synthesis, reproduction, immune function, energy metabolism, and cell signaling, which may contribute to local adaptation of African populations. Conclusions We observe high levels of genomic variation between ethnically diverse Africans which is largely correlated with geography and language. Our study indicates ancient population substructure and local adaptation of Africans.
Population Genomics of Human Adaptation
Recent advances in genotyping technologies have facilitated genome-wide scans for natural selection. Detecting targets of natural selection sheds light on human evolution and it can help identify genetic variants that influence normal human phenotypic variation as well as disease susceptibility. Here we focus on studies of natural selection in modern humans who originated ~200,000 years ago in Africa and migrated across the globe ~50,000-100,000 years ago. Movement into new environments, as well as changes in culture and technology, including plant and animal domestication, resulted in local adaptation to diverse environments. We summarize statistical approaches for detecting targets of natural selection and for distinguishing the effects of demographic history from natural selection. On a genome-wide scale, immune-related genes are major targets of positive selection. Genes associated with reproduction and fertility also are fast evolving. Additional examples of recent human adaptation include genes associated with lactase persistence, eccrine glands, and response to hypoxia. Lastly, we emphasize the need to supplement scans of selection with functional studies to demonstrate the physiologic impact of candidate loci.
Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians
Background African populations provide a unique opportunity to interrogate host-microbe co-evolution and its impact on adaptive phenotypes due to their genomic, phenotypic, and cultural diversity. We integrate gut microbiome 16S rRNA amplicon and shotgun metagenomic sequence data with quantification of pathogen burden and measures of immune parameters for 575 ethnically diverse Africans from Cameroon. Subjects followed pastoralist, agropastoralist, and hunter-gatherer lifestyles and were compared to an urban US population from Philadelphia. Results We observe significant differences in gut microbiome composition across populations that correlate with subsistence strategy and country. After these, the variable most strongly associated with gut microbiome structure in Cameroonians is the presence of gut parasites. Hunter-gatherers have high frequencies of parasites relative to agropastoralists and pastoralists. Ascaris lumbricoides , Necator americanus , Trichuris trichiura , and Strongyloides stercoralis soil-transmitted helminths (“ANTS” parasites) significantly co-occur, and increased frequency of gut parasites correlates with increased gut microbial diversity. Gut microbiome composition predicts ANTS positivity with 80% accuracy. Colonization with ANTS, in turn, is associated with elevated levels of TH1, TH2, and proinflammatory cytokines, indicating an association with multiple immune mechanisms. The unprecedented size of this dataset allowed interrogation of additional questions—for example, we find that Fulani pastoralists, who consume high levels of milk, possess an enrichment of gut bacteria that catabolize galactose, an end product of lactose metabolism, and of bacteria that metabolize lipids. Conclusions These data document associations of bacterial microbiota and eukaryotic parasites with each other and with host immune responses; each of these is further correlated with subsistence practices.
Genome-wide patterns of population structure and admixture in West Africans and African Americans
Quantifying patterns of population structure in Africans and African Americans illuminates the history of human populations and is critical for undertaking medical genomic studies on a global scale. To obtain a fine-scale genome-wide perspective of ancestry, we analyze Affymetrix GeneChip 500K genotype data from African Americans (n = 365) and individuals with ancestry from West Africa (n = 203 from 12 populations) and Europe (n = 400 from 42 countries). We find that population structure within the West African sample reflects primarily language and secondarily geographical distance, echoing the Bantu expansion. Among African Americans, analysis of genomic admixture by a principal component-based approach indicates that the median proportion of European ancestry is 18.5% (25th-75th percentiles: 11.6-27.7%), with very large variation among individuals. In the African-American sample as a whole, few autosomal regions showed exceptionally high or low mean African ancestry, but the X chromosome showed elevated levels of African ancestry, consistent with a sex-biased pattern of gene flow with an excess of European male and African female ancestry. We also find that genomic profiles of individual African Americans afford personalized ancestry reconstructions differentiating ancient vs. recent European and African ancestry. Finally, patterns of genetic similarity among inferred African segments of African-American genomes and genomes of contemporary African populations included in this study suggest African ancestry is most similar to non-Bantu Niger-Kordofanian-speaking populations, consistent with historical documents of the African Diaspora and trans-Atlantic slave trade.
Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana
Background Gut microbiota from individuals in rural, non-industrialized societies differ from those in individuals from industrialized societies. Here, we use 16S rRNA sequencing to survey the gut bacteria of seven non-industrialized populations from Tanzania and Botswana. These include populations practicing traditional hunter-gatherer, pastoralist, and agropastoralist subsistence lifestyles and a comparative urban cohort from the greater Philadelphia region. Results We find that bacterial diversity per individual and within-population phylogenetic dissimilarity differs between Botswanan and Tanzanian populations, with Tanzania generally having higher diversity per individual and lower dissimilarity between individuals. Among subsistence groups, the gut bacteria of hunter-gatherers are phylogenetically distinct from both agropastoralists and pastoralists, but that of agropastoralists and pastoralists were not significantly different from each other. Nearly half of the Bantu-speaking agropastoralists from Botswana have gut bacteria that are very similar to the Philadelphian cohort. Based on imputed metagenomic content, US samples have a relative enrichment of genes found in pathways for degradation of several common industrial pollutants. Within two African populations, we find evidence that bacterial composition correlates with the genetic relatedness between individuals. Conclusions Across the cohort, similarity in bacterial presence/absence compositions between people increases with both geographic proximity and genetic relatedness, while abundance weighted bacterial composition varies more significantly with geographic proximity than with genetic relatedness.
Genetic Structure and History of Africans and African Americans
Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
Implications of biogeography of human populations for 'race' and medicine
In this review, we focus on the biogeographical distribution of genetic variation and address whether or not populations cluster according to the popular concept of 'race'. We show that racial classifications are inadequate descriptors of the distribution of genetic variation in our species. Although populations do cluster by broad geographic regions, which generally correspond to socially recognized races, the distribution of genetic variation is quasicontinuous in clinal patterns related to geography. The broad global pattern reflects the accumulation of genetic drift associated with a recent African origin of modern humans, followed by expansion out of Africa and across the rest of the globe. Because disease genes may be geographically restricted due to mutation, genetic drift, migration and natural selection, knowledge of individual ancestry will be important for biomedical studies. Identifiers based on race will often be insufficient.
The genetic and evolutionary basis of gene expression variation in East Africans
Background Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. Results We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. Conclusion Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.