Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Tockner, Andreas"
Sort by:
Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology
The estimation of single tree and complete stand information is one of the central tasks of forest inventory. In recent years, automatic algorithms have been successfully developed for the detection and measurement of trees with laser scanning technology. Nevertheless, most of the forest inventories are nowadays carried out with manual tree measurements using traditional instruments. This is due to the high investment costs for modern laser scanner equipment and, in particular, the time-consuming and incomplete nature of data acquisition with stationary terrestrial laser scanners. Traditionally, forest inventory data are collected through manual surveys with calipers or tapes. Practically, this is both labor and time-consuming. In 2020, Apple implemented a Light Detection and Ranging (LiDAR) sensor in the new Apple iPad Pro (4th Gen) and iPhone Pro 12. Since then, access to LiDAR-generated 3D point clouds has become possible with consumer-level devices. In this study, an Apple iPad Pro was tested to produce 3D point clouds, and its performance was compared with a personal laser scanning (PLS) approach to estimate individual tree parameters in different forest types and structures. Reference data were obtained by traditional measurements on 21 circular forest inventory sample plots with a 7 m radius. The tree mapping with the iPad showed a detection rate of 97.3% compared to 99.5% with the PLS scans for trees with a lower diameter at a breast height (dbh) threshold of 10 cm. The root mean square error (RMSE) of the best dbh measurement out of five different dbh modeling approaches was 3.13 cm with the iPad and 1.59 cm with PLS. The data acquisition time with the iPad was approximately 7.51 min per sample plot; this is twice as long as that with PLS but 2.5 times shorter than that with traditional forest inventory equipment. In conclusion, the proposed forest inventory with the iPad is generally feasible and achieves accurate and precise stem counts and dbh measurements with efficient labor effort compared to traditional approaches. Along with future technological developments, it is expected that other consumer-level handheld devices with integrated laser scanners will also be developed beyond the iPad, which will serve as an accurate and cost-efficient alternative solution to the approved but relatively expensive TLS and PLS systems. Such a development would be mandatory to broadly establish digital technology and fully automated routines in forest inventory practice. Finally, high-level progress is generally expected for the broader scientific community in forest ecosystem monitoring, as the collection of highly precise 3D point cloud data is no longer hindered by financial burdens.
Automatic Mapping of Forest Stands Based on Three-Dimensional Point Clouds Derived from Terrestrial Laser-Scanning
Mapping of exact tree positions can be regarded as a crucial task of field work associated with forest monitoring, especially on intensive research plots. We propose a two-stage density clustering approach for the automatic mapping of tree positions, and an algorithm for automatic tree diameter estimates based on terrestrial laser-scanning (TLS) point cloud data sampled under limited sighting conditions. We show that our novel approach is able to detect tree positions in a mixed and vertically structured stand with an overall accuracy of 91.6%, and with omission- and commission error of only 5.7% and 2.7% respectively. Moreover, we were able to reproduce the stand’s diameter in breast height (DBH) distribution, and to estimate single trees DBH with a mean average deviation of ±2.90 cm compared with tape measurements as reference.
Accuracy and Precision of Stem Cross-Section Modeling in 3D Point Clouds from TLS and Caliper Measurements for Basal Area Estimation
The utilization of terrestrial laser scanning (TLS) data for forest inventory purposes has increasingly gained recognition in the past two decades. Volume estimates from TLS data are usually derived from the integral of cross-section area estimates along the stem axis. The purpose of this study was to compare the performance of circle, ellipse, and spline fits applied to cross-section area modeling, and to evaluate the influence of different modeling parameters on the cross-section area estimation. For this purpose, 20 trees were scanned with FARO Focus3D X330 and afterward felled to collect stem disks at different heights. The contours of the disks were digitized under in vitro laboratory conditions to provide reference data for the evaluation of the in situ TLS-based cross-section modeling. The results showed that the spline model fit achieved the most precise and accurate estimate of the cross-section area when compared to the reference cross-section area (RMSD (Root Mean Square Deviation) and bias of only 3.66% and 0.17%, respectively) and was able to exactly represent the shape of the stem disk (ratio between intersection and union of modeled and reference cross-section area of 88.69%). In comparison, contour fits with ellipses and circles yielded higher RMSD (5.28% and 10.08%, respectively) and bias (1.96% and 3.27%, respectively). The circle fit proved to be especially robust with respect to varying parameter settings, but provided exact estimates only for regular-shaped stem disks, such as those from the upper parts of the stem. Spline-based models of the cross-section at breast height were further used to examine the influence of caliper orientation on the volume estimation. Simulated caliper measures of the DBH showed an RMSD of 3.99% and a bias of 1.73% when compared to the reference DBH, which was calculated via the reference cross-section area, resulting in biased estimates of basal area and volume. DBH estimates obtained by simulated cross-calipering showed statistically significant deviations from the reference. The findings cast doubt on the customary utilization of manually calipered diameters as reference data when evaluating the accuracy of TLS data, as TLS-based estimates have reached an accuracy level surpassing traditional caliper measures.
Spatial Prediction of Diameter Distributions for the Alpine Protection Forests in Ebensee, Austria, Using ALS/PLS and Spatial Distributional Regression Models
A novel Bayesian spatial distributional regression model is presented to predict forest structural diversity in terms of the distributions of the stem diameter at breast height (DBH) in the protection forests in Ebensee, Austria. The distributional regression approach overcomes the limitations and uncertainties of traditional regression modeling, in which the conditional mean of the response is regressed against explanatory variables. The distributional regression addresses the complete conditional response distribution, instead. In total 36,338 sample trees were measured via a handheld mobile personal laser scanning system (PLS) on 273 sample plots each having a 20 m radius. Recent airborne laser scanning (ALS) data were used to derive regression covariates from the normalized digital vegetation height model (DVHM) and the digital terrain model (DTM). Candidate models were constructed that differed in their linear predictors of the two gamma distribution parameters. In the distributional regression approach, covariates can enter the model in a flexible form, such as via nonlinear smooth curves, cyclic smooths, or spatial effects. Supported by Bayesian diagnostics DIC and WAIC, nonlinear smoothing splines outperformed linear parametric slope coefficients, and the best implementation of spatial structured effects was achieved by a Gaussian process smooth. Model fitting and posterior parameter inference was achieved by using full Bayesian methodology and MCMC sampling algorithms implemented in the R-package BAMLSS. With BAMLSS, spatial interval predictions of the DBH distribution at any new geo-locations were enabled via straightforward access to the posterior predictive distributions of the model terms and by offering simple plug-in solutions for new covariate values. A cross-validation analysis validated the robustness of the proposed method’s parameter estimation and out-of-sample prediction. Spatial predictions of stem count proportions per DBH classes revealed that regeneration of smaller trees was lacking in certain areas of the protection forest landscape. Therefore, the intensity of final felling needs to be increased to reduce shading from the dense, overmature shelter trees and to promote sunlight for the young regeneration trees.
Potential of Apple Vision Pro for Accurate Tree Diameter Measurements in Forests
The determination of diameter at breast height (DBH) is critical in forestry, serving as a key metric for deriving various parameters, including tree volume. Light Detection and Ranging (LiDAR) technology has been increasingly employed in forest inventories, and the development of cost-effective, user-friendly smartphone and tablet applications (apps) has expanded its broader use. Among these are augmented reality (AR) apps, which have already been tested on mobile devices for their accuracy in measuring forest attributes. In February 2024, Apple introduced the Mixed-Reality Interface (MRITF) via the Apple Vision Pro (AVP), offering sensor capabilities for field data collection. In this study, two apps using the AVP were tested for DBH measurement on 182 trees across 22 sample plots in a near-natural forest, against caliper-based reference measurements. Compared with the reference measurements, both apps exhibited a slight underestimation bias of −1.00 cm and −1.07 cm, and the root-mean-square error (RMSE) was 3.14 cm and 2.34 cm, respectively. The coefficient of determination (R2) between the reference data and the measurements obtained by the two apps was 0.959 and 0.978. The AVP demonstrated its potential as a reliable field tool for DBH measurement, performing consistently across varying terrain.
Quantification of Forest Regeneration on Forest Inventory Sample Plots Using Point Clouds from Personal Laser Scanning
The presence of sufficient natural regeneration in mature forests is regarded as a pivotal criterion for their future stability, ensuring seamless reforestation following final harvesting operations or forest calamities. Consequently, forest regeneration is typically quantified as part of forest inventories to monitor its occurrence and development over time. Light detection and ranging (LiDAR) technology, particularly ground-based LiDAR, has emerged as a powerful tool for assessing typical forest inventory parameters, providing high-resolution, three-dimensional data on the forest structure. Therefore, it is logical to attempt a LiDAR-based quantification of forest regeneration, which could greatly enhance area-wide monitoring, further supporting sustainable forest management through data-driven decision making. However, examples in the literature are relatively sparse, with most relevant studies focusing on an indirect quantification of understory density from airborne LiDAR data (ALS). The objective of this study is to develop an accurate and reliable method for estimating regeneration coverage from data obtained through personal laser scanning (PLS). To this end, 19 forest inventory plots were scanned with both a personal and a high-resolution terrestrial laser scanner (TLS) for reference purposes. The voxelated point clouds obtained from the personal laser scanner were converted into raster images, providing either the canopy height, the total number of filled voxels (containing at least one LiDAR point), or the ratio of filled voxels to the total number of voxels. Local maxima in these raster images, assumed to be likely to contain tree saplings, were then used as seed points for a raster-based tree segmentation, which was employed to derive the final regeneration coverage estimate. The results showed that the estimates differed from the reference in a range of approximately −10 to +10 percentage points, with an average deviation of around 0 percentage points. In contrast, visually estimated regeneration coverages on the same forest plots deviated from the reference by between −20 and +30 percentage points, approximately −2 percentage points on average. These findings highlight the potential of PLS data for automated forest regeneration quantification, which could be further expanded to include a broader range of data collected during LiDAR-based forest inventory campaigns.
Fault Detection in Offshore Structures: Influence of Sensor Number, Placement and Quality
Within the Space@Sea project floating offshore islands, designed as an assembly of platforms, are used to create space in offshore environments. Offshore structures are exposed to harsh environment conditions. High wind speeds, heavy rainfall, ice and wave forces lead to highly stressed structures. The platforms at the Space@Sea project are connected by ropes and fenders. There exists the risk of a rope failing which is therefore investigated subsequently. To ensure the safety of the structure, the rope parameters are monitored by the Extended Kalman Filter (EKF). For platform arrangements, a large number of sensors is required for accurate fault diagnosis of these ropes, leading to high investment costs. This paper presents a strategy to optimize the number and placement of acceleration sensors attached to the floating platforms. There are also high demands on the sensors due to the harsh offshore conditions. Material deterioration and overloading may lead to decayed sensor performance or sensor defects. Maintenance of offshore sensors is difficult, expensive and often not feasible within a short time. Therefore, sensor measurement deviations must not affect reliable structure fault detection. The influence of defect sensors on the rope fault detection is examined in this study: Types, intensities, number, place of occurrence of defect sensors and the distance between defect sensors and rope faults are varied.
Optimizing line-plot size for personal laser scanning: modeling distance-dependent tree detection probability along transects
Personal laser scanning (PLS) systems are gaining popularity in forest inventory research and practice. They are primarily utilized on circular or compact rectangular sample plots to mitigate potential instrument drift and enhance tree detection rates, and a closed-loop scan path is usually implemented to achieve these objectives, ensuring thorough coverage of the plot. This study introduced a novel approach by applying the distance-sampling framework to PLS data collected during walks along line transects. Modeling the distance-dependent probability of tree detection using PLS coupled with automatic routines for point cloud processing aimed to ascertain the optimal width of line-plots to maximize tree detection rates. The optimized plots exhibited tree detection rates exceeding 99%, which facilitated accurate estimates of tree density, basal area, and growing stock volumes. This proposed method demonstrated considerable potential for data collection while walking along line transects in forests. For instance, the otherwise unproductive working time of field crews moving between systematically arranged sample plots can be utilized for additional data collection without generating additional costs. This innovative approach not only enhances operational efficiency but also establishes a foundation for further advancements to explore PLS applications in forest management practices.
Spatial prediction of diameter distributions for the alpine protection forests in Ebensee, Austria, using ALS/PLS and spatial distributional regression models
A spatial distributional regression model is presented to predict the forest structural diversity in terms of the distributions of the stem diameter at breast height (DBH) in the protection forests in Ebensee, Austria. In total 36,338 sample trees were measured via a handheld mobile personal laser scanning system (PLS) on 273 sample plots each having a 20 m radius. Recent airborne laser scanning (ALS) data was used to derive regression covariates from the normalized digital vegetation height model (DVHM) and the digital terrain model (DTM). Candidate models were constructed that differed in their linear predictors of the two gamma distribution parameters. Non-linear smoothing splines outperformed linear parametric slope coefficients, and the best implementation of spatial structured effects was achieved by a Gaussian process smooth. Model fitting and posterior parameter inference was achieved by using full Bayesian methodology and MCMC sampling algorithms implemented in the R-package BAMLSS. Spatial predictions of stem count proportions per DBH classes revealed that regeneration of smaller trees was lacking in certain areas of the protection forest landscape.
Connectivity and complex systems: learning from a multi-disciplinary perspective
In recent years, parallel developments in disparate disciplines have focused on what has come to be termed connectivity ; a concept used in understanding and describing complex systems. Conceptualisations and operationalisations of connectivity have evolved largely within their disciplinary boundaries, yet similarities in this concept and its application among disciplines are evident. However, any implementation of the concept of connectivity carries with it both ontological and epistemological constraints, which leads us to ask if there is one type or set of approach(es) to connectivity that might be applied to all disciplines. In this review we explore four ontological and epistemological challenges in using connectivity to understand complex systems from the standpoint of widely different disciplines. These are: (i) defining the fundamental unit for the study of connectivity; (ii) separating structural connectivity from functional connectivity; (iii) understanding emergent behaviour; and (iv) measuring connectivity. We draw upon discipline-specific insights from Computational Neuroscience, Ecology, Geomorphology, Neuroscience, Social Network Science and Systems Biology to explore the use of connectivity among these disciplines. We evaluate how a connectivity-based approach has generated new understanding of structural-functional relationships that characterise complex systems and propose a ‘common toolbox’ underpinned by network-based approaches that can advance connectivity studies by overcoming existing constraints.