Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Tongen Lin"
Sort by:
Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer
Providing sufficient driving force for charge separation and transfer (CST) is a critical issue in photoelectrochemical (PEC) energy conversion. Normally, the driving force is derived mainly from band bending at the photoelectrode/electrolyte interface but negligible in the bulk. To boost the bulky driving force, we report a rational strategy to create effective electric field via controllable lattice distortion in the bulk of a semiconductor film. This concept is verified by the lithiation of a classic TiO 2 (Li-TiO 2 ) photoelectrode, which leads to significant distortion of the TiO 6 unit cells in the bulk with well-aligned dipole moment. A remarkable internal built-in electric field of ~2.1 × 10 2  V m −1 throughout the Li-TiO 2 film is created to provide strong driving force for bulky CST. The photoelectrode demonstrates an over 750% improvement of photocurrent density and 100 mV negative shift of onset potential upon the lithiation compared to that of pristine TiO 2 film. The driving force for charge transfer in photoelectrochemical systems is typically derived from band bending at a surface-electrolyte interface. In this work, battery-type lithiation of TiO 2 generates a built-in electric field in the bulk material, giving a 750% enhancement in photocurrent density.
Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling
Transition metal dissolution in cathode active material for Li-based batteries is a critical aspect that limits the cycle life of these devices. Although several approaches have been proposed to tackle this issue, this detrimental process is not yet overcome. Here, benefitting from the knowledge developed in the semiconductor research field, we apply an epitaxial method to construct an atomic wetting layer of LaTMO 3 (TM = Ni, Mn) on a LiNi 0.5 Mn 1.5 O 4 cathode material. Experimental measurements and theoretical analyses confirm a Stranski–Krastanov growth, where the strained wetting layer forms under thermodynamic equilibrium, and it is self-limited to monoatomic thickness due to the competition between the surface energy and the elastic energy. Being atomically thin and crystallographically connected to the spinel host lattices, the LaTMO 3 wetting layer offers long-term suppression of the transition metal dissolution from the cathode without impacting its dynamics. As a result, the epitaxially-engineered cathode material enables improved cycling stability (a capacity retention of about 77% after 1000 cycles at 290 mA g −1 ) when tested in combination with a graphitic carbon anode and a LiPF 6 -based non-aqueous electrolyte solution. Transition metal dissolution from cathode materials limits the cycle life of Li-ion batteries. Here, the authors report an atomic-thin protecting layer on the surface of a high-voltage cathode material, enabling long-term Li-ion battery cycling.
In Situ Bonding Regulation of Surface Ligands for Efficient and Stable FAPbI3 Quantum Dot Solar Cells
Quantum dots (QDs) of formamidinium lead triiodide (FAPbI3) perovskite hold great potential, outperforming their inorganic counterparts in terms of phase stability and carrier lifetime, for high‐performance solar cells. However, the highly dynamic nature of FAPbI3 QDs, which mainly originates from the proton exchange between oleic acid and oleylamine (OAm) surface ligands, is a key hurdle that impedes the fabrication of high‐efficiency solar cells. To tackle such an issue, here, protonated‐OAm in situ to strengthen the ligand binding at the surface of FAPbI3 QDs, which can effectively suppress the defect formation during QD synthesis and purification processes is selectively introduced. In addition, by forming a halide‐rich surface environment, the ligand density in a broader range for FAPbI3 QDs without compromising their structural integrity, which significantly improves their optoelectronic properties can be modulated. As a result, the power conversion efficiency of FAPbI3 QD solar cells (QDSCs) is enhanced from 7.4% to 13.8%, a record for FAPbI3 QDSCs. Furthermore, the suppressed proton exchange and reduced surface defects in FAPbI3 QDs also enhance the stability of QDSCs, which retain 80% of the initial efficiency upon exposure to ambient air for 3000 hours. An in situ surface ligand regulation strategy for deliberately controlling protonated‐oleylamine (OAm) dominated surface binding of formamidinium lead triiodide quantum dots (FAPbI3 QDs) is demonstrated. The QDs present reduced long‐chain insulating ligand density without compromising their structural integrity, leading to the corresponding QD solar cell a record power conversion efficiency of 13.8% for FAPbI3 QDSCs.
Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries
The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth’s abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.
High‐Performance Zinc–Bromine Rechargeable Batteries Enabled by In‐Situ Formed Solid Electrolyte Interphase
Aqueous zinc–bromine batteries (ZBBs) are promising candidates for renewable energy storage, offering advantages over lithium‐ion batteries. However, their widespread adoption is hindered by challenges such as zinc dendrite formation and water decomposition, which lead to short circuits, electrode degradation and reduced cycle life. Therefore, this study presents a facile strategy for in‐situ construction of a fluorinated solid electrolyte interphase (SEI) formed via coating graphite current collectors with a lubricant hydrophobic perfluoropolyether interlayer. During the initial charging process, a fluoride‐rich SEI layer forms to regulate Zn nucleation and suppress dendrite growth. This SEI promotes uniform zinc deposition and inhibits hydrogen evolution by limiting water access to the electrode surface, thereby enhancing cycle life and energy efficiency. As a result, ZBBs incorporating this SEI exhibit a substantial reduction in potential hysteresis from 285 to 60 mV, deliver an energy density of nearly 20 Wh L−1 and an areal capacity of 10.7 mAh cm−2, and maintain >79% energy efficiency over 1000 cycles. This work offers a scalable approach to achieving high‐performance ZBBs, advancing the development of next‐generation anode‐free zinc batteries. A hydrophobic surface coating enables the in‐situ formation of a zinc fluoride‐rich solid electrolyte interphase (SEI) in zinc–bromine batteries. This SEI suppresses dendrite formation and water‐induced side reactions, leading to uniform zinc deposition, reduced voltage hysteresis, and extended cycle life. The strategy offers a scalable pathway to high‐efficiency, long‐lasting aqueous zinc battery systems for renewable energy storage.
In Situ Bonding Regulation of Surface Ligands for Efficient and Stable FAPbI 3 Quantum Dot Solar Cells
Quantum dots (QDs) of formamidinium lead triiodide (FAPbI 3 ) perovskite hold great potential, outperforming their inorganic counterparts in terms of phase stability and carrier lifetime, for high‐performance solar cells. However, the highly dynamic nature of FAPbI 3 QDs, which mainly originates from the proton exchange between oleic acid and oleylamine (OAm) surface ligands, is a key hurdle that impedes the fabrication of high‐efficiency solar cells. To tackle such an issue, here, protonated‐OAm in situ to strengthen the ligand binding at the surface of FAPbI 3 QDs, which can effectively suppress the defect formation during QD synthesis and purification processes is selectively introduced. In addition, by forming a halide‐rich surface environment, the ligand density in a broader range for FAPbI 3 QDs without compromising their structural integrity, which significantly improves their optoelectronic properties can be modulated. As a result, the power conversion efficiency of FAPbI 3 QD solar cells (QDSCs) is enhanced from 7.4% to 13.8%, a record for FAPbI 3 QDSCs. Furthermore, the suppressed proton exchange and reduced surface defects in FAPbI 3 QDs also enhance the stability of QDSCs, which retain 80% of the initial efficiency upon exposure to ambient air for 3000 hours.
Lattice distortion induced internal electric field in TiO 2 photoelectrode for efficient charge separation and transfer
Providing sufficient driving force for charge separation and transfer (CST) is a critical issue in photoelectrochemical (PEC) energy conversion. Normally, the driving force is derived mainly from band bending at the photoelectrode/electrolyte interface but negligible in the bulk. To boost the bulky driving force, we report a rational strategy to create effective electric field via controllable lattice distortion in the bulk of a semiconductor film. This concept is verified by the lithiation of a classic TiO (Li-TiO ) photoelectrode, which leads to significant distortion of the TiO unit cells in the bulk with well-aligned dipole moment. A remarkable internal built-in electric field of ~2.1 × 10  V m throughout the Li-TiO film is created to provide strong driving force for bulky CST. The photoelectrode demonstrates an over 750% improvement of photocurrent density and 100 mV negative shift of onset potential upon the lithiation compared to that of pristine TiO film.
Epitaxial growth of an atom-thin layer on a LiNi 0.5 Mn 1.5 O 4 cathode for stable Li-ion battery cycling
Transition metal dissolution in cathode active material for Li-based batteries is a critical aspect that limits the cycle life of these devices. Although several approaches have been proposed to tackle this issue, this detrimental process is not yet overcome. Here, benefitting from the knowledge developed in the semiconductor research field, we apply an epitaxial method to construct an atomic wetting layer of LaTMO (TM = Ni, Mn) on a LiNi Mn O cathode material. Experimental measurements and theoretical analyses confirm a Stranski-Krastanov growth, where the strained wetting layer forms under thermodynamic equilibrium, and it is self-limited to monoatomic thickness due to the competition between the surface energy and the elastic energy. Being atomically thin and crystallographically connected to the spinel host lattices, the LaTMO wetting layer offers long-term suppression of the transition metal dissolution from the cathode without impacting its dynamics. As a result, the epitaxially-engineered cathode material enables improved cycling stability (a capacity retention of about 77% after 1000 cycles at 290 mA g ) when tested in combination with a graphitic carbon anode and a LiPF -based non-aqueous electrolyte solution.
Optimisation and Use of Humanised RBL NF-AT-GFP and NF-AT-DsRed Reporter Cell Lines Suitable for High-Throughput Scale Detection of Allergic Sensitisation in Array Format and Identification of the ECM–Integrin Interaction as Critical Factor
We have previously described a microarray platform combining live basophils with protein arrays suitable for high-throughput detection of sensitisation against allergens. During optimisation of this technique, we observed severe losses of adhering cells during the washing steps, particularly after activation. In order to preserve cell binding, we tested the cell adhesion characteristics of different extracellular matrix proteins: human collagen I, fibronectin (FN) from bovine plasma and laminin (LN). FN was more effective than LN and collagen. Cell detachment after activation was in part due to reduced surface expression of VLA-4, the main ligand for FN, which was significantly decreased within 15 min of stimulation with 1 μg/mL calcium ionophore A23187, reaching a minimum after 2 h then slowly recovering. These optimised conditions were used for testing of well-characterised sera from allergic patients using two newly developed rat basophil leukaemia stable reporter cell lines (RBL NF-AT/GFP and RBL NF-AT/DsRed), which both express the human high-affinity IgE receptor alpha chain (FcεRIα). Both cell lines were able to detect sensitisation to specific allergens showing the expected bell-shaped dose–response curve, and correlated (R² = 0.75) with the standard beta-hexosaminidase assay, which is not suitable for an array format.