Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
48 result(s) for "Topalian, Suzanne L."
Sort by:
Neoadjuvant checkpoint blockade for cancer immunotherapy
Checkpoint blockade immunotherapy using antibodies that inhibit the programmed cell death 1 (PD-1) or cytotoxic T lymphocyte–associated protein 4 (CTLA-4) pathways has resulted in unprecedented clinical outcomes for certain cancers such as melanoma. Topalian et al. review advances in neoadjuvant (presurgical) immunotherapy as an important next step for enhancing the response of early-stage tumors to immune checkpoint blockade. They highlight the mechanistic rationale for neoadjuvant immunotherapy and recent neoadjuvant clinical trials based on anti–PD-1 or anti–PD-1 ligand 1 (anti–PD-L1) therapy. Pathological assessment criteria that may provide early on-treatment biomarkers to predict patient response are also discussed. Science , this issue p. eaax0182 Cancer immunotherapies that target the programmed cell death 1 (PD-1):programmed death-ligand 1 (PD-L1) immune checkpoint pathway have ushered in the modern oncology era. Drugs that block PD-1 or PD-L1 facilitate endogenous antitumor immunity and, because of their broad activity spectrum, have been regarded as a common denominator for cancer therapy. Nevertheless, many advanced tumors demonstrate de novo or acquired treatment resistance, and ongoing research efforts are focused on improving patient outcomes. Using anti–PD-1 or anti–PD-L1 treatment against earlier stages of cancer is hypothesized to be one such solution. This Review focuses on the development of neoadjuvant (presurgical) immunotherapy in the era of PD-1 pathway blockade, highlighting particular considerations for biological mechanisms, clinical trial design, and pathologic response assessments. Findings from neoadjuvant immunotherapy studies may reveal pathways, mechanisms, and molecules that can be cotargeted in new treatment combinations to increase anti–PD-1 and anti–PD-L1 efficacy.
Mechanisms regulating PD-L1 expression on tumor and immune cells
BackgroundThe PD-1/PD-L1 checkpoint is a central mediator of immunosuppression in the tumor immune microenvironment (TME) and is primarily associated with IFN-g signaling. To characterize other factors regulating PD-L1 expression on tumor and/or immune cells, we investigated TME-resident cytokines and the role of transcription factors in constitutive and cytokine-induced PD-L1 expression.MethodsThirty-four cultured human tumor lines [18 melanomas (MEL), 12 renal cell carcinomas (RCC), 3 squamous cell carcinomas of the head and neck (SCCHN), and 1 non-small-cell lung carcinoma (NSCLC)] and peripheral blood monocytes (Monos) were treated with cytokines that we detected in the PD-L1+ TME by gene expression profiling, including IFN-g, IL-1a, IL-10, IL-27 and IL-32g. PD-L1 cell surface protein expression was detected by flow cytometry, and mRNA by quantitative real-time PCR. Total and phosphorylated STAT1, STAT3, and p65 proteins were detected by Western blotting, and the genes encoding these proteins were knocked down with siRNAs. Additionally, the proximal promoter region of PDL1 (CD274) was sequenced in 33 cultured tumors.ResultsPD-L1 was constitutively expressed on 1/17 cultured MELs, 8/11 RCCs, 3/3 SCCHNs, and on Monos. Brief IFN-g exposure rapidly induced PD-L1 on all tumor cell lines and Monos regardless of constitutive PD-L1 expression. PD-L1 mRNA levels were associated with protein expression, which was diminished by exposure to transcriptional inhibitors. siRNA knockdown of STAT1 but not STAT3 reduced IFN-g- and IL-27-induced PD-L1 protein expression on tumor cells. In contrast, STAT3 knockdown in Monos reduced IL-10-induced PD-L1 protein expression, and p65 knockdown in tumor cells reduced IL-1a-induced PD-L1 expression. Notably, constitutive PD-L1 expression was not affected by knocking down STAT1, STAT3, or p65. Differential effects of IFN-g, IL-1a, and IL-27 on individual tumor cell lines were not due to PDL1 promoter polymorphisms.ConclusionsMultiple cytokines found in an immune-reactive TME may induce PD-L1 expression on tumor and/or immune cells through distinct signaling mechanisms. Factors driving constitutive PD-L1 expression were not identified in this study. Understanding complex mechanisms underlying PD-L1 display in the TME may allow treatment approaches mitigating expression of this immunosuppressive ligand, to enhance the impact of PD-1 blockade.
Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer
Releasing T cells from inhibitory control has been a strategy exploited by the anti–CTLA-4 antibody ipilimumab. Now an antibody against a second checkpoint molecule, programmed death 1 (PD-1), has also shown activity against cancers, including non–small-cell lung cancer. Human cancers harbor numerous genetic and epigenetic alterations, generating neoantigens that are potentially recognizable by the immune system. 1 Although an endogenous immune response to cancer is observed in preclinical models and patients, this response is ineffective, because tumors develop multiple resistance mechanisms, including local immune suppression, induction of tolerance, and systemic dysfunction in T-cell signaling. 2 – 5 Moreover, tumors may exploit several distinct pathways to actively evade immune destruction, including endogenous “immune checkpoints” that normally terminate immune responses after antigen activation. These observations have resulted in intensive efforts to develop immunotherapeutic approaches for cancer, including immune-checkpoint-pathway inhibitors such as anti–CTLA-4 antibody . . .
Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial
BackgroundHead and neck squamous cell carcinomas (HNSCCs) are common malignancies caused by carcinogens, including tobacco and alcohol, or infection with human papillomavirus (HPV). Immune checkpoint inhibitors targeting the programmed cell death 1 (PD-1) pathway are effective against unresectable recurrent/metastatic HNSCC. Here, we explored the safety and efficacy of anti-PD-1 therapy in at-risk resectable HPV-positive and HPV-negative HNSCC in the neoadjuvant setting.MethodsThe phase I/II CheckMate 358 trial in virus-associated cancers assessed neoadjuvant nivolumab in patients with previously untreated, resectable HPV-positive or HPV-negative HNSCC. Patients received nivolumab 240 mg intravenously on days 1 and 15, with surgery planned by day 29. Safety/tolerability (primary endpoint) was assessed by monitoring adverse events (AEs) and surgical delays. Radiographic response was measured before surgery using RECIST v1.1, adapted for a single post-nivolumab evaluation. Pathologic specimens were examined for treatment response using immune-based criteria.ResultsFrom November 2015 to December 2017, 52 patients with AJCC (seventh edition) stage III–IV resectable HNSCC received neoadjuvant nivolumab (26 HPV-positive, 26 HPV-negative). Any-grade treatment-related AEs (TRAEs) occurred in 19 patients (73.1%) and 14 patients (53.8%) in the HPV-positive and HPV-negative cohorts, respectively; grade 3–4 TRAEs occurred in five (19.2%) and three patients (11.5%), respectively. No patient had a protocol-defined TRAE-related surgical delay (>4 weeks). Thirty-eight patients were reported as undergoing complete surgical resection, 10 had a planned post-nivolumab biopsy instead of definitive surgery due to a protocol misinterpretation, and four did not undergo surgery or biopsy, including two with tumor progression. Radiographic response rates in 49 evaluable patients were 12.0% and 8.3% in the HPV-positive and HPV-negative cohorts, respectively. There were no complete pathologic responses by site or central review in operated patients. Among 17 centrally evaluable HPV-positive tumors, one (5.9%) achieved major pathological response and three (17.6%) achieved partial pathologic response (pPR); among 17 centrally evaluable HPV-negative tumors, one (5.9%) achieved pPR.ConclusionsNeoadjuvant nivolumab was generally safe and induced pathologic regressions in HPV-positive (23.5%) and HPV-negative (5.9%) tumors. Combinatorial neoadjuvant treatment regimens, and continued postoperative therapy for high-risk tumors, are warranted in future trials to enhance the efficacy of this approach.Trial registration numberClinicalTrials.gov NCT02488759; https://clinicaltrials.gov/ct2/show/NCT02488759.
Nivolumab with or without ipilimumab in patients with recurrent or metastatic cervical cancer (CheckMate 358): a phase 1–2, open-label, multicohort trial
In preliminary findings from the recurrent or metastatic cervical cancer cohort of CheckMate 358, nivolumab showed durable anti-tumour responses, and the combination of nivolumab plus ipilimumab showed promising clinical activity. Here, we report long-term outcomes from this cohort. CheckMate 358 was a phase 1–2, open-label, multicohort trial. The metastatic cervical cancer cohort enrolled patients from 30 hospitals and cancer centres across ten countries. Female patients aged 18 years or older with a histologically confirmed diagnosis of squamous cell carcinoma of the cervix with recurrent or metastatic disease, an Eastern Cooperative Oncology Group performance status of 0 or 1, and up to two previous systemic therapies were enrolled into the nivolumab 240 mg every 2 weeks group, the randomised groups (nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks [NIVO3 plus IPI1] or nivolumab 1 mg/kg every 3 weeks plus ipilimumab 3 mg/kg every 3 weeks for four cycles then nivolumab 240 mg every 2 weeks [NIVO1 plus IPI3]), or the NIVO1 plus IPI3 expansion group. All doses were given intravenously. Patients were randomly assigned (1:1) to NIVO3 plus IPI1 or NIVO1 plus IPI3 via an interactive voice response system. Treatment continued until disease progression, unacceptable toxicity, or consent withdrawal, or for up to 24 months. The primary endpoint was investigator-assessed objective response rate. Anti-tumour activity and safety were analysed in all treated patients. This study is registered with ClinicalTrials.gov (NCT02488759) and is now completed. Between October, 2015, and March, 2020, 193 patients were recruited in the recurrent or metastatic cervical cancer cohort of CheckMate 358, of whom 176 were treated. 19 patients received nivolumab monotherapy, 45 received NIVO3 plus IPI1, and 112 received NIVO1 plus IPI3 (45 in the randomised group and 67 in the expansion group). Median follow-up times were 19·9 months (IQR 8·2–44·8) with nivolumab, 12·6 months (7·8–37·1) with NIVO3 plus IPI1, and 16·7 months (7·2–27·5) with pooled NIVO1 plus IPI3. Objective response rates were 26% (95% CI 9–51; five of 19 patients) with nivolumab, 31% (18–47; 14 of 45 patients) with NIVO3 plus IPI1, 40% (26–56; 18 of 45 patients) with randomised NIVO1 plus IPI3, and 38% (29–48; 43 of 112 patients) with pooled NIVO1 plus IPI3. The most common grade 3–4 treatment-related adverse events were diarrhoea, hepatic cytolysis, hyponatraemia, pneumonitis, and syncope (one [5%] patient each; nivolumab group), diarrhoea, increased gamma-glutamyl transferase, increased lipase, and vomiting (two [4%] patients each; NIVO3 plus IPI1 group), and increased lipase (nine [8%] patients) and anaemia (seven [6%] patients; pooled NIVO1 plus IPI3 group). Serious treatment-related adverse events were reported in three (16%) patients in the nivolumab group, 12 (27%) patients in the NIVO3 plus IPI1 group, and 47 (42%) patients in the pooled NIVO1 plus IPI3 group. There was one treatment-related death due to immune-mediated colitis in the NIVO1 plus IPI3 group. Nivolumab monotherapy and nivolumab plus ipilimumab combination therapy showed promise in the CheckMate 358 study as potential treatment options for recurrent or metastatic cervical cancer. Future randomised controlled trials of nivolumab plus ipilimumab or other dual immunotherapy regimens are warranted to confirm treatment benefit in this patient population. Bristol Myers Squibb and Ono Pharmaceutical.
Neoadjuvant anti-PD-1-based immunotherapy: evolving a new standard of care
Neoadjuvant (presurgical) anti-programmed cell death protein-1 (PD-1)-based immunotherapy as a new approach to cancer treatment has been developing on an accelerated trajectory since the seminal clinical trial results from studies in lung cancer and melanoma were published in 2018. Groundbreaking regulatory approvals in triple-negative breast cancer, non-small cell lung cancer and melanoma will certainly be followed by additional approvals in other disease indications, as clinical and basic research are burgeoning globally in hundreds of clinical trials across dozens of cancer types. As this field is evolving, it is addressing gaps in our understanding of biological mechanisms underlying PD-1 pathway blockade and their synergy with other antineoplastic drugs, probing mechanisms of response and resistance to neoadjuvant immunotherapy, optimizing efficacious clinical strategies, and analyzing commonalities and differences across cancer types. Knowledge gained thus far provides a firm foundation from which to launch the next phase of translational research in this expanding arena of biomedical investigation.
Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes
Through the adoptive transfer of lymphocytes after host immunodepletion, it is possible to mediate objective cancer regression in human patients with metastatic melanoma. However, the generation of tumor-specific T cells in this mode of immunotherapy is often limiting. Here we report the ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor. Adoptive transfer of these transduced cells in 15 patients resulted in durable engraftment at levels exceeding 10% of peripheral blood lymphocytes for at least 2 months after the infusion. We observed high sustained levels of circulating, engineered cells at 1 year after infusion in two patients who both demonstrated objective regression of metastatic melanoma lesions. This study suggests the therapeutic potential of genetically engineered cells for the biologic therapy of cancer.
Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce
As the field of cancer immunotherapy continues to advance at a fast pace, treatment approaches and drug development are evolving rapidly to maximize patient benefit. New agents are commonly evaluated for activity in patients who had previously received a programmed death receptor 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor as standard of care or in an investigational study. However, because of the kinetics and patterns of response to PD-1/PD-L1 blockade, and the lack of consistency in the clinical definitions of resistance to therapy, the design of clinical trials of new agents and interpretation of results remains an important challenge. To address this unmet need, the Society for Immunotherapy of Cancer convened a multistakeholder taskforce—consisting of experts in cancer immunotherapy from academia, industry, and government—to generate consensus clinical definitions for resistance to PD-(L)1 inhibitors in three distinct scenarios: primary resistance, secondary resistance, and progression after treatment discontinuation. The taskforce generated consensus on several key issues such as the timeframes that delineate each type of resistance, the necessity for confirmatory scans, and identified caveats for each specific resistance classification. The goal of this effort is to provide guidance for clinical trial design and to support analyses of emerging molecular and cellular data surrounding mechanisms of resistance.
A minimal gene set characterizes TIL specific for diverse tumor antigens across different cancer types
Identifying tumor-specific T cell clones that mediate immunotherapy responses remains challenging. Mutation-associated neoantigen (MANA) -specific CD8+ tumor-infiltrating lymphocytes (TIL) have been shown to express high levels of CXCL13 and CD39 ( ENTPD1 ), and low IL-7 receptor ( IL7R ) levels in many cancer types, but their collective relevance to T cell functionality has not been established. Here we present an integrative tool to identify MANA-specific TIL using weighted expression levels of these three genes in lung cancer and melanoma single-cell RNAseq datasets. Our three-gene “MANAscore” algorithm outperforms other RNAseq-based algorithms in identifying validated neoantigen-specific CD8+ clones, and accurately identifies TILs that recognize other classes of tumor antigens, including cancer testis antigens, endogenous retroviruses and viral oncogenes. Most of these TIL are characterized by a tissue resident memory gene expression program. Putative tumor-reactive cells (pTRC) identified via MANAscore in anti-PD-1-treated lung tumors had higher expression of checkpoint and cytotoxicity-related genes relative to putative non-tumor-reactive cells. pTRC in pathologically responding tumors showed distinguished gene expression patterns and trajectories. Collectively, we show that MANAscore is a robust tool that can greatly enrich candidate tumor-specific T cells and be used to understand the functional programming of tumor-reactive TIL. Although individual genes that distinguish tumor-reactive CD8+ T cells from bystander T cells in tumors have been described, a functionally meaningful integrative signature has not been established. Here authors show that mutation-associated neoantigen-specific CD8+ tumor-infiltrating lymphocytes can be recognized by MANAscore, an algorithm that uses weighted expression levels of CXCL13, ENTPD1 and IL7R in single-cell RNAseq datasets of lung cancer and melanoma patients as input.
T antigen–specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma
Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.