Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
57 result(s) for "Topp, Christopher N"
Sort by:
GiA Roots: software for the high throughput analysis of plant root system architecture
Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa . We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.
The Persistent Homology Mathematical Framework Provides Enhanced Genotype-to-Phenotype Associations for Plant Morphology
Efforts to understand the genetic and environmental conditioning of plant morphology are hindered by the lack of flexible and effective tools for quantifying morphology. Here, we demonstrate that persistent-homology-based topological methods can improve measurement of variation in leaf shape, serrations, and root architecture. We apply these methods to 2D images of leaves and root systems in field-grown plants of a domesticated introgression line population of tomato (Solanum pennellii). We find that compared with some commonly used conventional traits, (1) persistent-homology-based methods can more comprehensively capture morphological variation; (2) these techniques discriminate between genotypes with a larger normalized effect size and detect a greater number of unique quantitative trait loci (QTLs); (3) multivariate traits, whether statistically derived from univariate or persistent-homology-based traits, improve our ability to understand the genetic basis of phenotype; and (4) persistent-homology-based techniques detect unique QTLs compared to conventional traits or their multivariate derivatives, indicating that previously unmeasured aspects of morphology are now detectable. The QTL results further imply that genetic contributions to morphology can affect both the shoot and root, revealing a pleiotropic basis to natural variation in tomato. Persistent homology is a versatile framework to quantify plant morphology and developmental processes that complements and extends existing methods.
DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots
We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.
3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture
Improving the efficiency of root systems should result in crop varieties with better yields, requiring fewer chemical inputs, and that can grow in harsher environments. Little is known about the genetic factors that condition root growth because of roots’ complex shapes, the opacity of soil, and environmental influences. We designed a 3D root imaging and analysis platform and used it to identify regions of the rice genome that control several different aspects of root system growth. The results of this study should inform future efforts to enhance root architecture for agricultural benefit. Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci ( r 2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops.
Comprehensive 3D phenotyping reveals continuous morphological variation across genetically diverse sorghum inflorescences
• Inflorescence architecture in plants is often complex and challenging to quantify, particularly for inflorescences of cereal grasses. Methods for capturing inflorescence architecture and for analyzing the resulting data are limited to a few easily captured parameters that may miss the rich underlying diversity. • Here, we apply X-ray computed tomography combined with detailed morphometrics, offering new imaging and computational tools to analyze three-dimensional inflorescence architecture. To show the power of this approach, we focus on the panicles of Sorghum bicolor, which vary extensively in numbers, lengths, and angles of primary branches, as well as the three-dimensional shape, size, and distribution of the seed. • We imaged and comprehensively evaluated the panicle morphology of 55 sorghum accessions that represent the five botanical races in the most common classification system of the species, defined by genetic data. We used our data to determine the reliability of the morphological characters for assigning specimens to race and found that seed features were particularly informative. • However, the extensive overlap between botanical races in multivariate trait space indicates that the phenotypic range of each group extends well beyond its overall genetic background, indicating unexpectedly weak correlation between morphology, genetic identity, and domestication history.
DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA
Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically). It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics.
Evaluation of 3D seed structure and cellular traits in-situ using X-ray microscopy
Phenotyping methods for seed morphology are mostly limited to two-dimensional imaging or manual measures. In this study, we present a novel seed phenotyping approach utilizing lab-based X-ray microscopy (XRM) to characterize 3D seed morphology, internal structures, and cellular analysis from a single scan. Seeds of pennycress ( Thlaspi arvense L.) an oilseed cover crop, were scanned and segmented using a machine learning model. Seed morphological analysis and a coat thickness map was applied to compare seed volumes of four genotypes. Notably, the 3D seed volume measurement alone was not enough to reveal differences in seed coat between the genotypes. Applying a seed coat thickness map revealed that the Large-Golden genotype had a thinner seed coat compared to wildtype despite a greater seed coat volume. Cellular analysis showed that cotyledon cell size was a driving factor for larger seeds. XRM was compared to traditional seed morphology traits and positive correlations were observed. Between Large-Golden and wildtype, differences could only be resolved by XRM highlighting the limitations of 2D seed area measures. These results demonstrate that XRM can provide quantitative measures extracted from seeds for enhancing our understanding of seed structure, development, and facilitate breeding efforts for enhanced seed quality and crop performance.
TopoRoot+: computing whorl and soil line traits of field-excavated maize roots from CT imaging
Background The use of 3D imaging techniques, such as X-ray CT, in root phenotyping has become more widespread in recent years. However, due to the complexity of the root structure, analyzing the resulting 3D volumes to obtain detailed architectural root traits remains a challenging computational problem. When it comes to image-based phenotyping of excavated maize root crowns, two types of root features that are notably missing from existing methods are the whorls and soil line. Whorls refer to the distinct areas located at the base of each stem node from which roots sprout in a circular pattern (Liu S, Barrow CS, Hanlon M, Lynch JP, Bucksch A. Dirt/3D: 3D root phenotyping for field-grown maize ( zea mays ). Plant Physiol. 2021;187(2):739–57. https://doi.org/10.1093/plphys/kiab311 .). The soil line is where the root stem meets the ground. Knowledge of these features would give biologists deeper insights into the root system architecture (RSA) and the below- and above-ground root properties. Results We developed TopoRoot+, a computational pipeline that produces architectural traits from 3D X-ray CT volumes of excavated maize root crowns. Building upon the TopoRoot software (Zeng D, Li M, Jiang N, Ju Y, Schreiber H, Chambers E, et al. Toporoot: A method for computing hierarchy and fine-grained traits of maize roots from 3D imaging. Plant Methods. 2021;17(1). https://doi.org/10.1186/s13007-021-00829-z .) for computing fine-grained root traits, TopoRoot + adds the capability to detect whorls, identify nodal roots at each whorl, and compute the soil line location. The new algorithms in TopoRoot + offer an additional set of fine-grained traits beyond those provided by TopoRoot. The addition includes internode distances, root traits at every hierarchy level associated with a whorl, and root traits specific to above or below the ground. TopoRoot + is validated on a diverse collection of field-grown maize root crowns consisting of nine genotypes and spanning across three years. TopoRoot + runs in minutes for a typical volume size of on a desktop workstation. Our software and test dataset are freely distributed on Github. Conclusions TopoRoot + advances the state-of-the-art in image-based phenotyping of excavated maize root crowns by offering more detailed architectural traits related to whorls and soil lines. The efficiency of TopoRoot + makes it well-suited for high-throughput image-based root phenotyping.
A temporal analysis and response to nitrate availability of 3D root system architecture in diverse pennycress (Thlaspi arvense L.) accessions
Roots have a central role in plant resource capture and are the interface between the plant and the soil that affect multiple ecosystem processes. Field pennycress ( L.) is a diploid annual cover crop species that has potential utility for reducing soil erosion and nutrient losses; and has rich seeds (30-35% oil) amenable to biofuel production and as a protein animal feed. The objective of this research was to (1) precisely characterize root system architecture and development, (2) understand plastic responses of pennycress roots to nitrate nutrition, (3) and determine genotypic variance available in root development and nitrate plasticity. Using a root imaging and analysis pipeline, the 4D architecture of the pennycress root system was characterized under four nitrate regimes, ranging from zero to high nitrate concentrations. These measurements were taken at four time points (days 5, 9, 13, and 17 after sowing). Significant nitrate condition response and genotype interactions were identified for many root traits, with the greatest impact observed on lateral root traits. In trace nitrate conditions, a greater lateral root count, length, density, and a steeper lateral root angle was observed compared to high nitrate conditions. Additionally, genotype-by-nitrate condition interaction was observed for root width, width:depth ratio, mean lateral root length, and lateral root density. These findings illustrate root trait variance among pennycress accessions. These traits could serve as targets for breeding programs aimed at developing improved cover crops that are responsive to nitrate, leading to enhanced productivity, resilience, and ecosystem service.