Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
22
result(s) for
"Toptan, Tuna"
Sort by:
Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs
by
Westhaus, Sandra
,
Cinatl, Jindrich
,
Toptan, Tuna
in
Animals
,
Betacoronavirus - genetics
,
Binding sites
2020
The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Meanwhile, increased demand for testing has led to a shortage of reagents and supplies and compromised the performance of diagnostic laboratories in many countries. Both the World Health Organization (WHO) and the Center for Disease Control and Prevention (CDC) recommend multi-step RT-PCR assays using multiple primer and probe pairs, which might complicate the interpretation of the test results, especially for borderline cases. In this study, we describe an alternative RT-PCR approach for the detection of SARS-CoV-2 RNA that can be used for the probe-based detection of clinical isolates in diagnostics as well as in research labs using a low-cost SYBR green method. For the evaluation, we used samples from patients with confirmed SARS-CoV-2 infections and performed RT-PCR assays along with successive dilutions of RNA standards to determine the limit of detection. We identified an M-gene binding primer and probe pair highly suitable for the quantitative detection of SARS-CoV-2 RNA for diagnostic and research purposes.
Journal Article
Circular DNA tumor viruses make circular RNAs
by
Nalesnik, Michael A.
,
Moore, Patrick S.
,
Toptan, Tuna
in
Acquired immune deficiency syndrome
,
AIDS
,
Antisense RNA
2018
Epstein−Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) cause ∼2% of all human cancers. RNase R-resistant RNA sequencing revealed that both gammaherpesviruses encode multiple, uniquely stable, circular RNAs (circRNA). EBV abundantly expressed both exon-only and exon–intron circRNAs from the BamHI A rightward transcript (BART) locus (circBARTs) formed from a spliced BART transcript and excluding the EBV miRNA region. The circBARTs were expressed in all verified EBV latency types, including EBV-positive posttransplant lymphoproliferative disease, Burkitt lymphoma, nasopharyngeal carcinoma, and AIDS-associated lymphoma tissues and cell lines. Only cells infected with the B95-8 EBV strain, with a 12-kb BART locus deletion, were negative for EBV circBARTs. Less abundant levels of EBV circRNAs originating from LMP2- and BHLF1-encoding genes were also identified. The circRNA sequencing of KSHV-infected primary effusion lymphoma cells revealed a KSHV-encoded circRNA from the vIRF4 locus (circvIRF4) that was constitutively expressed. In addition, KSHV polyadenylated nuclear (PAN) RNA locus generated a swarm (>100) of multiply backspliced, low-abundance RNase R-resistant circRNAs originating in both sense and antisense directions consistent with a novel hyperbacksplicing mechanism. In EBV and KSHV coinfected cells, exon-only EBV circBARTs were located more in the cytoplasm, whereas the intron-retaining circBARTs were found in the nuclear fraction. KSHV circvIRF4 and circPANs were detected in both nuclear and cytoplasmic fractions. Among viral circRNAs tested, none were found in polysome fractions from KSHV–EBV coinfected BC1 cells, although low-abundance protein translation from viral circRNAs could not be excluded. The circRNAs are a new class of viral transcripts expressed in gammaherpesvirus-related tumors that might contribute to viral oncogenesis.
Journal Article
The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro
2021
Due to globally rising numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resources for real-time reverse-transcription polymerase chain reaction (rRT-PCR)-based testing have been exhausted. In order to meet the demands of testing and reduce transmission, SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs) are being considered. These tests are fast, inexpensive, and simple to use, but whether they detect potentially infectious cases has not been well studied. We evaluated three lateral flow assays (RIDA®QUICK SARS-CoV-2 Antigen (R-Biopharm), SARS-CoV-2 Rapid Antigen Test (Roche)), and NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) and one microfluidic immunofluorescence assay (SARS-CoV-2 Ag Test (LumiraDx GmbH, Cologne, Germany)) using 100 clinical samples. Diagnostic rRT-PCR and cell culture testing as a marker for infectivity were performed in parallel. The overall Ag-RDT sensitivity for rRT-PCR-positive samples ranged from 24.3% to 50%. However, for samples with a viral load of more than 6 log10 RNA copies/mL (22/100), typically seen in infectious individuals, Ag-RDT positivity was between 81.8% and 100%. Only 51.6% (33/64) of the rRT-PCR-positive samples were infectious in cell culture. In contrast, three Ag-RDTs demonstrated a more significant correlation with cell culture infectivity (61.8–82.4%). Our findings suggest that large-scale SARS-CoV-2 Ag-RDT-based testing can be considered for detecting potentially infective individuals and reducing the virus spread.
Journal Article
Antibody-Mediated Neutralization of Authentic SARS-CoV-2 B.1.617 Variants Harboring L452R and T478K/E484Q
by
Wolf, Timo
,
Wilhelm, Alexander
,
Toptan, Tuna
in
Alleles
,
Amino Acid Substitution
,
Antibodies, Neutralizing - immunology
2021
The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections. We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R. We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.51-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab. In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which, however, might be circumvented by combination therapy with casirivimab together.
Journal Article
Kaposi’s Sarcoma-Associated Herpesvirus-Encoded circRNAs Are Expressed in Infected Tumor Tissues and Are Incorporated into Virions
2020
KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells. Kaposi’s sarcoma-associated herpesvirus (KSHV) has recently been found to generate circular RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (viral interferon regulatory factor 4 [vIRF4]), K7.3, and polyadenylated nuclear (PAN) RNA. To define expression of these circRNAs, KSHV-infected cell lines, patient tissues, and purified virions were examined. KSHV circRNA expression was universally detected in tests of six primary effusion lymphoma (PEL) cell lines but ranged from low-level expression in BC-1 cells dually infected with tightly latent KSHV and Epstein-Barr virus to abundant expression in KSHV-only BCBL-1 cells with spontaneous virus production. Generally, the PAN/K7.3 locus broadly and bidirectionally generated circRNA levels that paralleled the corresponding linear RNA levels. However, RNA corresponding to a particular KSHV circularization site (circ-vIRF4) was minimally induced, despite linear vIRF4 RNA being activated by virus induction. In situ hybridization showed abundant circ-vIRF4 in noninduced PEL cells. All three KSHV circRNAs were isolated as nuclease-protected forms from gradient-purified virions collected from BrK.219 cells infected with a KSHV molecular clone. For circ-vIRF4, the fully processed form that is exported to the cytoplasm was incorporated into virus particles but the nuclear, intron-retaining form was not. The half-life of circ-vIRF4 was twice as long as that of its linear counterpart. The KSHV circRNAs could be detected at a higher rate than their corresponding linear counterparts by in situ hybridization in archival tissues and by reverse transcription-PCR (RT-PCR) in sera stored for over 25 years. In summary, KSHV circRNAs are expressed in infection-associated diseases, can be regulated depending on virus life cycle, and are incorporated into viral particles for preformed delivery, suggesting a potential function in early infection. IMPORTANCE KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells.
Journal Article
Merkel Cell Polyomavirus Encodes Circular RNAs (circRNAs) Enabling a Dynamic circRNA/microRNA/mRNA Regulatory Network
2020
Covalently closed circular RNAs were recently described in the human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV). Here, we show that MCV, another DNA tumor virus, generates circRNAs from its early regulatory region in concert with T antigen linear transcripts. Viral noncoding RNAs have acquired increasing prominence as important regulators of infection and mediators of pathogenesis. Circular RNAs (circRNAs) generated by backsplicing events have been identified in several oncogenic human DNA viruses. Here, we show that Merkel cell polyomavirus (MCV), the etiologic cause of ∼80% of Merkel cell carcinomas (MCCs), also expresses circular RNAs. By RNase R-resistant RNA sequencing, four putative circRNA backsplice junctions (BSJs) were identified from the MCV early region (ER). The most abundantly expressed MCV circRNA, designated circMCV-T, is generated through backsplicing of all of ER exon II to form a 762-nucleotide (nt) circular RNA molecule. Curiously, circMCV-T, as well as two other less abundantly expressed putative MCV circRNAs, overlaps in a complementary fashion with the MCV microRNA (miRNA) locus that encodes MCV-miR-M1. circMCV-T is consistently detected in concert with linear T antigen transcripts throughout infection, suggesting a crucial role for this RNA molecule in the regulatory functions of the early region, known to be vital for viral replication. Knocking out the hairpin structure of MCV-miR-M1 in genomic early region expression constructs and using a new high-efficiency, recombinase-mediated, recircularized MCV molecular clone demonstrates that circMCV-T levels decrease in the presence of MCV-miR-M1, underscoring the interplay between MCV circRNA and miRNA. Furthermore, circMCV-T partially reverses the known inhibitory effect of MCV-miR-M1 on early gene expression. RNase R-resistant RNA sequencing of lytic rat polyomavirus 2 (RatPyV2) identified an analogously located circRNA, stipulating a crucial, conserved regulatory function of this class of RNA molecules in the family of polyomaviruses. IMPORTANCE Covalently closed circular RNAs were recently described in the human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV). Here, we show that MCV, another DNA tumor virus, generates circRNAs from its early regulatory region in concert with T antigen linear transcripts. MCV circMCV-T interacts with another MCV noncoding RNA, miR-M1, to functionally modulate early region transcript expression important for viral replication and long-term episomal persistence. This work describes a dynamic regulatory network integrating circRNA/miRNA/mRNA biomolecules and underscores the intricate functional modulation between several classes of polyomavirus-encoded RNAs in the control of viral replication.
Journal Article
A composite symptoms severity score based on survey self-reports as a predictor of SARS-CoV-2 infection and viral load
2025
Background
Establishing a strong correlation between active SARS-CoV-2 infection and COVID-19 severity could enhance early risk assessment, predict disease outcomes, and identify patients needing urgent treatment.
Methods
In this prospective SARS-CoV-2 transmission cohort study, we introduce the potential of a symptoms severity score (S3) based on patient self-reported symptoms and further evaluate its utility for predicting SARS-CoV-2 infection status and viral load. The S3 construct, derived from a participant survey using pre-defined scales (Cronbach’s alpha=0.7), was categorized as asymptomatic, mild to moderate, or severe. This analysis comprised nine household contacts, contributing 1,410 qualitative and 89 quantitative visit‑test observations.
Results
S3 showed a high correlation with total symptoms (Pearson
r
= 0.963,
p
< 0.0001). The categorized version (S3C) also correlated strongly with the number of symptoms (Spearman’s
r
= 0.988,
p
< 0.0001). A generalized estimating equation (GEE) model revealed that participants with severe symptoms had 6.5 times higher odds of having an active SARS-CoV-2 infection than those with no symptoms (Odds Ratio = 6.5, 95% CI: 3.5 to 12.4,
p
< 0.0001). Similar significant results were found for severe vs. mild to moderate symptoms (OR = 2.3, CI: 1.3 to 4.1,
p
= 0.0025) and mild to moderate vs. asymptomatic (OR = 2.8, 95% CI: 1.4 to 5.4,
p
= 0.0030).
Conclusions
Our findings demonstrate that self-reported symptom severity and number of symptoms are robust predictors of SARS-CoV-2 infection and viral load, providing potential utility in clinical risk stratification. However, limitations, including a small sample size for viral load analyses and reliance on self-reported data, should be considered.
Journal Article
Kinetics of SARS-CoV-2 infection biomarkers in a household transmission study
2024
SARS-CoV-2 is the causative agent of COVID-19. Timely and accurate diagnostic testing is vital to contain the spread of infection, reduce delays in treatment and care, and inform patient management. Optimal specimen type (e.g. nasal swabs or saliva), timing of sampling, viral marker assayed (RNA or antigen), and correlation with viral infectivity and COVID-19 symptoms severity remain incompletely defined. We conducted a field study to evaluate SARS-CoV-2 viral marker kinetics starting from very early times after infection. We measured RNA and antigen levels in nasal swabs and saliva, virus outgrowth in cell culture from nasal swabs, and antibody levels in blood in a cohort of 30 households. Nine household contacts (HHC) became infected with SARS-CoV-2 during the study. Viral RNA was detected in saliva specimens approximately 1–2 days before nasal swabs in six HHC. Detection of RNA was more sensitive than of antigen, but antigen detection was better correlated with culture positivity, a proxy for contagiousness. Anti-nucleocapsid antibodies peaked one to three weeks post-infection. Viral RNA and antigen levels were higher in specimens yielding replication competent virus in cell culture. This study provides important data that can inform how to optimally interpret SARS-CoV-2 diagnostic test results.
Journal Article
Characterization of the Antibody and Interferon-Gamma Release Response after a Second COVID-19 Booster Vaccination
by
Wilhelm, Alexander
,
Toptan Grabmair, Tuna
,
Hoehl, Sebastian
in
Antibodies
,
Cell activation
,
Cell culture
2022
The emergence of SARS-CoV-2 Omicron subvariants prompted countries to call for accelerated booster vaccinations to limit disease and transmission. Here, we characterized correlates of protection over time after the second booster or after Omicron BA.1 infection comparing variants of concern (VOCs). Sera from subjects before and two and seven weeks after the second booster or after Omicron infection were examined for the level of Spike receptor-binding-domain (RBD)-specific antibodies. Furthermore, neutralizing antibodies (nABs) were characterized in in vitro neutralization assays comparing the variants of concern Alpha, Beta, Delta, and Omicron BA.1 and BA.2 against the ancestral strain B.1. Here, the second booster resulted in an increase in anti-RBD-IgG-antibodies, remaining nearly constant over time, accompanied by an increase in nABs against B.1 and the VOCs Alpha, Beta, Delta, and Omicron BA.1 and BA.2. However, compared to B.1, the neutralizing capacity against the Omicron subvariants remained low and was limited after the second booster vaccination. This indicates that antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three individuals of our study cohort became infected with Omicron BA.1 after the second booster. T cell activation was measured by interferon-gamma release assays in a subgroup of subjects and was increased in all subjects tested after the second booster vaccination, correlating with the amount of Spike-specific antibodies. In subjects with Omicron BA.1 breakthrough infection, a significant increase in nABs to all VOCs studied was observed independently of booster vaccinations. Taken together, our data indicate that a second booster or Omicron BA.1 infection mediate a substantial increase in anti-Spike IgG antibodies; however, infection with Omicron BA.1 induced a stronger increase in neutralizing antibodies against the different VOCs
Journal Article
Molecular Analyses of Clinical Isolates and Recombinant SARS-CoV-2 Carrying B.1 and B.1.617.2 Spike Mutations Suggest a Potential Role of Non-Spike Mutations in Infection Kinetics
by
Veleanu, Andrei
,
Wilhelm, Alexander
,
Toptan, Tuna
in
Artificial chromosomes
,
BAC mutagenesis
,
Bacterial artificial chromosomes
2022
Some of the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are less susceptible to neutralization with post-vaccine sera and monoclonal antibodies targeting the viral spike glycoprotein. This raises concerns of disease control, transmissibility, and severity. Numerous substitutions have been identified to increase viral fitness within the nucleocapsid and nonstructural proteins, in addition to spike mutations. Therefore, we sought to generate infectious viruses carrying only the variant-specific spike mutations in an identical backbone to evaluate the impact of spike and non-spike mutations in the virus life cycle. We used en passant mutagenesis to generate recombinant viruses carrying spike mutations of B.1 and B.1.617.2 variants using SARS-CoV-2- bacterial artificial chromosome (BAC). Neutralization assays using clinical sera yielded comparable results between recombinant viruses and corresponding clinical isolates. Non-spike mutations for both variants neither seemed to effect neutralization efficiencies with monoclonal antibodies nor the response to treatment with inhibitors. However, live-cell imaging and microscopy revealed differences, such as persisting syncytia and pronounced cytopathic effect formation, as well as their progression between BAC-derived viruses and clinical isolates in human lung epithelial cell lines and primary bronchial epithelial cells. Complementary RNA analyses further suggested a potential role of non-spike mutations in infection kinetics.
Journal Article