Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
104 result(s) for "Torella, Daniele"
Sort by:
Aged‐senescent cells contribute to impaired heart regeneration
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.
c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration
An overdose of Isoproterenol (ISO) causes acute cardiomyocyte (CM) dropout and activates the resident cardiac c-kit pos stem/progenitor cells (CSCs) generating a burst of new CM formation that replaces those lost to ISO. Recently, unsuccessful attempts to reproduce these findings using c-kit Cre knock-in (KI) mouse models were reported. We tested whether c-kit haploinsufficiency in c-kit Cre KI mice was the cause of the discrepant results in response to ISO. Male C57BL/6J wild-type (wt) mice and c-kit Cre KI mice were given a single dose of ISO (200 and/or 400 mg/Kg s.c.). CM formation was measured with different doses and duration of BrdU or EdU. We compared the myogenic and regenerative potential of the c-kit Cre CSCs with wtCSCs. Acute ISO overdose causes LV dysfunction with dose-dependent CM death by necrosis and apoptosis, whose intensity follows a basal-apical and epicardium to sub-endocardium gradient, with the most severe damage confined to the apical sub-endocardium. The damage triggers significant new CM formation mainly in the apical sub-endocardial layer. c-kit haploinsufficiency caused by c-kit Cre KIs severely affects CSCs myogenic potential. c-kit Cre KI mice post-ISO fail to respond with CSC activation and show reduced CM formation and suffer chronic cardiac dysfunction. Transplantation of wtCSCs rescued the defective regenerative cardiac phenotype of c-kit Cre KI mice. Furthermore, BAC-mediated transgenesis of a single c-kit gene copy normalized the functional diploid c-kit content of c-kit Cre KI CSCs and fully restored their regenerative competence. Overall, these data show that c-kit haploinsufficiency impairs the endogenous cardioregenerative response after injury affecting CSC activation and CM replacement. Repopulation of c-kit haploinsufficient myocardial tissue with wtCSCs as well c-kit gene deficit correction of haploinsufficient CSCs restores CM replacement and functional cardiac repair. Thus, adult neo-cardiomyogenesis depends on and requires a diploid level of c-kit.
Perspective use of bio-adhesive liquid crystals as ophthalmic drug delivery systems
The success of many drugs in ophthalmic treatments is hindered by their physico-chemical properties and the limited precorneal retention time. Here, lyotropic liquid crystals are proposed as a new ophthalmic drug delivery system. Acyclovir was chosen as model drug for its solubility and its controlled release from cubic phase was achieved. We demonstrated the effortless application of lamellar phase on corneal surface and its ability to convert itself in cubic phase in situ. While the complex viscosity of lamellar phase was affected by temperature (5.1 ± 1.4 kPa·s at 25 °C and 0.12 ± 0.001 Pa·s at 35 °C, respectively), the cubic phase shown no changes in viscosity values and shear thinning behaviour at both temperatures and even in presence of the drug The degradation kinetic of drug-loaded cubic phase was slightly slower than the empty formulation, recording 27.92 ± 1.43% and 33.30 ± 3.11% of weight loss after 8 h. Ex vivo studies conducted on porcine eyeballs and isolated cornea confirmed the instantaneous transition to cubic phase, its ability to resist to gravity force, and forced dripping of simulated tear fluid. Histopathological investigation showed how treated cornea did not report changes in epithelial and stroma structures. In summary, lyotropic liquid crystals could represent an advantageous ophthalmic drug delivery system.
Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Glucagon-like Peptide-1 Receptor Agonists and Suicidal Ideation: Analysis of Real-Word Data Collected in the European Pharmacovigilance Database
Background: A potential risk of suicide associated with liraglutide or semaglutide treatments has recently emerged. Therefore, we decided to investigate the reporting probability of suicidal events among glucagon-like peptide-1 receptor agonists (GLP-1 RAs). Methods: A retrospective pharmacovigilance study of the European Pharmacovigilance database was conducted for the period from 1 January 2018 to 10 July 2023. Disproportionality analyses (reporting odds ratio, ROR) were performed to assess the reporting probability of suicidal events among GLP-1 RAs. Results: A total of 230 reports of suicidal events were identified. The most reported GLP-1 RA was liraglutide (38.3%), followed by semaglutide (36.5%) and dulaglutide (16.1%). The most reported events were suicidal ideation (65.3%) and suicide attempt (19.5%). Disproportionality analysis found a higher reporting probability of suicidal events for semaglutide than dulaglutide (ROR, 2.05; 95%CI, 1.40–3.01) and exenatide (ROR, 1.81; 95%CI, 1.08–3.05). In the same way, liraglutide was associated with a higher reporting probability of suicidal events than dulaglutide (ROR, 3.98; 95%CI, 2.73–5.82) and exenatide (ROR, 3.52; 95%CI, 2.10–5.92). On the contrary, a lower reporting probability was found for semaglutide than liraglutide (ROR, 0.51; 95%CI, 0.38–0.69). Conclusions: Suicidal events were mostly reported with semaglutide and liraglutide, which were also associated with significantly higher reporting probabilities compared to other GLP1 RAs. Although this study provides the reporting frequencies of suicide-related events with GLP-1 RAs, establishing causality requires further investigation, which will probably be addressed by the Pharmacovigilance Risk Assessment Committee of the European Medicine Agency in the future.
C-Kit Is Essential for Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and In Vivo After Injury
Pathological vascular remodeling—central to restenosis, atherosclerosis, and vasculo-proliferative diseases—depends on the phenotypic switching of vascular smooth muscle cells (VSMCs) from a quiescent, contractile state to a synthetic, proliferative program. Although the receptor tyrosine kinase c-Kit is implicated in proliferation, migration, and tissue repair, its role in VSMC plasticity has yet to be fully understood. Using c-Kit haploinsufficient mice subjected to right carotid artery ligation (CAL) and primary aortic VSMC cultures, we show that c-Kit is required for the contractile-to-synthetic transition. In vitro, c-Kit haploinsufficiency halved c-Kit expression, reduced 5-bromo-2′-deoxyuridine (BrdU) incorporation, and blunted platelet-derived growth factor BB (PDGF-BB)-induced repression of contractile genes. c-Kit–deficient VSMCs exhibited a senescence program with increased p16INK4a/p21 expression and upregulated senescence-associated secretory phenotype (SASP) mediators. RNA-Seq of carotid arteries 7 days post-ligation revealed that wild-type arteries activated cell-cycle pathways and suppressed contractile signatures, whereas c-Kit-deficient carotid arteries failed to fully engage proliferative programs and instead maintained contractile gene expression. At 28 days post CAL in vivo, c-Kit haploinsufficiency produced markedly reduced neointima, fewer Ki67+ VSMCs, more p16INK4a+ cells, and impaired re-endothelialization. Because progenitor-to-VSMC differentiation contributes to remodeling, we tested adult cardiac stem/progenitor cells (CSCs) as a model system of adult progenitor differentiation. Wild-type CSCs efficiently generated induced VSMCs (iVSMCs) with appropriate smooth-muscle gene upregulation; c-Kit–deficient rarely did so. Restoring c-Kit with a BAC transgene rescued both the smooth-muscle differentiation and proliferative competence of c-Kit-deficient iVSMCs. Collectively, our data identified c-Kit as a gatekeeper of reparative VSMC plasticity. Adequate c-Kit enables progenitor-to-VSMC commitment and the expansion of newly formed VSMCs while permitting injury-induced proliferation and matrix synthesis; reduced c-Kit locks cells in a hypercontractile, senescence-prone state and limits neointima formation. Modulating the c-Kit axis may therefore offer a strategy to fine-tune vascular repair while mitigating pathological remodeling.
Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications
Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate, fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular risk in patients with kidney disease.
(+)-Lipoic acid reduces mitochondrial unfolded protein response and attenuates oxidative stress and aging in an in vitro model of non-alcoholic fatty liver disease
Background Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. Results Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 μM and 5 μM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers β-galactosidase, γH2Ax and Klotho-beta. Conclusions In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects. Graphical Abstract
Echocardiographic Assessment of Cardiac Function in Mouse Models of Heart Disease
Echocardiography is a cornerstone technique for evaluating cardiac function in preclinical research using murine models. This review provides a comprehensive overview of the echocardiographic approaches employed to assess ventricular function in mouse models of heart disease, highlighting methodological principles, technical challenges, and the translational relevance of findings. Various echocardiographic modalities enable the precise evaluation of systolic and diastolic function. This article emphasizes standardization in image acquisition and analysis to minimize inter-operator variability and ensure reproducibility. It details echocardiographic parameters and strain imaging across commonly used mouse models of non-ischemic dilated cardiomyopathy, diabetic cardiomyopathy, hypertensive heart disease, and ischemic heart disease. Furthermore, it explores the advantages and limitations of anesthesia, probe positioning, and physiological monitoring during imaging. The integration of advanced imaging technologies such as Speckle-Tracking Echocardiography (STE), Three-Dimensional (3-D), and Four-Dimensional (4-D) echocardiography is discussed as a promising avenue for enhancing data quality and improving the translational potential of preclinical cardiac studies.