Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
508
result(s) for
"Torres, Barbara"
Sort by:
Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long‐Term Outcome
2019
The main objective of this phase I trial was to assess the feasibility and safety of microtransplanting human neural stem cell (hNSC) lines into the spinal cord of patients with amyotrophic lateral sclerosis (ALS). Eighteen patients with a definite diagnosis of ALS received microinjections of hNSCs into the gray matter tracts of the lumbar or cervical spinal cord. Patients were monitored before and after transplantation by clinical, psychological, neuroradiological, and neurophysiological assessment. For up to 60 months after surgery, none of the patients manifested severe adverse effects or increased disease progression because of the treatment. Eleven patients died, and two underwent tracheotomy as a result of the natural history of the disease. We detected a transitory decrease in progression of ALS Functional Rating Scale Revised, starting within the first month after surgery and up to 4 months after transplantation. Our results show that transplantation of hNSC is a safe procedure that causes no major deleterious effects over the short or long term. This study is the first example of medical transplantation of a highly standardized cell drug product, which can be reproducibly and stably expanded ex vivo, comprising hNSC that are not immortalized, and are derived from the forebrain of the same two donors throughout this entire study as well as across future trials. Our experimental design provides benefits in terms of enhancing both intra‐ and interstudy reproducibility and homogeneity. Given the potential therapeutic effects of the hNSCs, our observations support undertaking future phase II clinical studies in which increased cell dosages are studied in larger cohorts of patients. Stem Cells Translational Medicine 2019;8:887&897 In this manuscript we present data from a phase I clinical trial on 18 ALS patients treated with human neural stem cells. Treatment has been performed transplanting cells directly into anterior horn of spinal cord. Results suggested that the procedure is feasible, safe and induce a transitory decline of ALS‐FRS‐R score progression.
Journal Article
Role of Anthocyanins in the Interaction between Salivary Mucins and Wine Astringent Compounds
by
Escribano-Bailón, María Teresa
,
Torres-Rochera, Bárbara
,
Manjón, Elvira
in
Anthocyanin
,
Anthocyanins
,
astringency
2023
Wine astringency is a very complex sensation whose complete mechanism has not been entirely described. Not only salivary proline-rich proteins (PRPs) are involved in its development; salivary mucins can also play an important role. On the other hand, it has been described that anthocyanins can interact with PRPs, but there is no information about their potential role on the interactions with mucins. In this work, the molecular interactions between salivary mucins (M) and different wine phenolic compounds, such as catechin (C), epicatechin (E) and quercetin 3-β-glucopyranoside (QG), as well as the effect of the anthocyanin malvidin 3-O-glucoside (Mv) on the interactions with mucins, were assessed by isothermal titration calorimetry (ITC). Results showed that the interaction between anthocyanin and mucins is stronger than that of both flavanols analyzed, since the affinity constant values were 10 times higher for anthocyanin than for catechin, the only flavanol showing interaction in binary assay. Moreover, at the concentration at which polyphenols are usually found in wine, flavonols seem not to be involved in the interactions with mucins. These results showed, for the first time, the importance of wine anthocyanins in the mechanisms of astringency involving high-molecular-weight salivary proteins like mucins.
Journal Article
Studying the Humoral Response against SARS‐CoV‐2 in Cuban COVID‐19 Recovered Patients
2024
Understanding the immune response generated by SARS‐CoV‐2 is critical for assessing efficient therapeutic protocols and gaining insights into the durability of protective immunity. The current work was aimed at studying the specific humoral responses against SARS‐CoV‐2 in Cuban COVID‐19 convalescents. We developed suitable tools and methods based on ELISA methodology, for supporting this evaluation. Here, we describe the development of an ELISA for the quantification of anti‐RBD IgG titers in a large number of samples and a similar test in the presence of NH 4 SCN as chaotropic agent for estimating the RBD specific antibody avidity. Additionally, a simple and rapid ELISA based on antibody‐mediated blockage of the binding RBD‐ACE2 was implemented for detecting, as a surrogate of conventional test, the levels of anti‐RBD inhibitory antibodies in convalescent sera. In a cohort of 273 unvaccinated convalescents, we identified higher anti‐RBD IgG titer (1 : 1,330, p < 0.0001) and higher levels of inhibitory antibodies blocking RBD‐ACE2 binding (1 : 216, p < 0.05) among those who had recovered from severe illness. Our results suggest that disease severity, and not demographic features such as age, sex, and skin color, is the main determinant of the magnitude and neutralizing ability of the anti‐RBD antibody response. An additional paired longitudinal assessment in 14 symptomatic convalescents revealed a decline in the antiviral antibody response and the persistence of neutralizing antibodies for at least 4 months after the onset of symptoms. Overall, SARS‐CoV‐2 infection elicits different levels of antibody response according to disease severity that declines over time and can be monitored using our homemade serological assays.
Journal Article
Retinoic acid-induced 1 gene haploinsufficiency alters lipid metabolism and causes autophagy defects in Smith-Magenis syndrome
by
Mazzoni, Martina
,
D’Arrigo, Stefano
,
Caicci, Federico
in
631/136/1425
,
631/80/304
,
Acetylcysteine
2022
Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (
RAI1
) gene caused by either chromosomal deletion (SMS-del) or
RAI1
missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying
RAI1
point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.
Journal Article
The role of tumor necrosis factor alpha - 308A G polymorphism on the clinical states of SARS-CoV-2 infection
by
Zúñiga-Rosales, Yaíma
,
Sotomayor-Lugo, Francisco
,
Monzón-Benítez, Giselle
in
Alleles
,
Asymptomatic
,
Coronaviruses
2022
Tumor necrosis factor-alpha (TNFÉ) is a cytokine that manages the host defense mechanism, which may play a role in the pathogenesis of COVID-19 patients. Several single-nucleotide polymorphisms, described in the promoter region of the TNF[alpha] gene, have a significant role on its transcriptional activity. These include the - 308A > G polymorphism which increases the TNF[alpha] levels with the expression of the A allele. The aim of this study was to explore whether the TNF[alpha].- 308A > G polymorphism affects the clinical state of COVID-19 patients. The study included a total of 1028 individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which were distributed in 3 groups: asymptomatic, mild symptomatic and severe symptomatic patients. The amplification-refractory mutation system was used to determine the genotype of the TNF[alpha].- 308A > G polymorphism. The TNF[alpha].- 308A allele has an influence on developing symptoms of COVID-19 in Cuban patients, and that it particularly increases the risk of presenting severe forms of the disease in the eastern region of the country.
Journal Article
Chromosomal Microarray Analysis in Fetuses Detected with Isolated Cardiovascular Malformation: A Multicenter Study, Systematic Review of the Literature and Meta-Analysis
by
Torres, Barbara
,
Piacentini, Gerardo
,
Khaleghi Hashemian, Nader
in
Cardiovascular disease
,
cardiovascular malformations
,
Cardiovascular system
2022
Cardiovascular malformations (CVM) represent the most common structural anomalies, occurring in 0.7% of live births. The CVM prenatal suspicion should prompt an accurate investigation with fetal echocardiography and the assessment through genetic counseling and testing. In particular, chromosomal microarray analysis (CMA) allows the identification of copy number variations. We performed a systematic review and meta-analysis of the literature, studying the incremental diagnostic yield of CMA in fetal isolated CVM, scoring yields for each category of heart disease, with the aim of guiding genetic counseling and prenatal management. At the same time, we report 59 fetuses with isolated CVM with normal karyotype who underwent CMA. The incremental CMA diagnostic yield in fetuses with isolated CVM was 5.79% (CI 5.54–6.04), with conotruncal malformations showing the higher detection rate (15.93%). The yields for ventricular septal defects and aberrant right subclavian artery were the lowest (2.64% and 0.66%). Other CVM ranged from 4.42% to 6.67%. In the retrospective cohort, the diagnostic yield was consistent with literature data, with an overall CMA diagnostic yield of 3.38%. CMA in the prenatal setting was confirmed as a valuable tool for investigating the causes of fetal cardiovascular malformations.
Journal Article
3′UTR Deletion of NONO Leads to Corpus Callosum Anomaly, Left Ventricular Non-Compaction and Ebstein’s Anomaly in a Male Fetus
by
Torres, Barbara
,
Flex, Elisabetta
,
Vaisfeld, Alessandro
in
Antibodies
,
Case Report
,
Chromosomes
2022
NONO (Non-Pou Domain-Containing Octamer-Binding Protein) gene maps on chromosome Xq13.1 and hemizygous loss-of-function nucleotide variants are associated with an emerging syndromic form of intellectual developmental disorder (MRXS34; MIM #300967), characterized by developmental delay, intellectual disability, poor language, dysmorphic facial features, and microcephaly. Structural brain malformation, such as corpus callosum and cerebellar abnormalities, and heart defects, in particular left ventricular non-compaction (LVNC), represent the most recurrent congenital malformations, recorded both in about 80% of patients, and can be considered the distinctive imaging findings of this disorder. We present on a further case of NONO-related disease; prenatally diagnosed in a fetus with complete corpus callosum agenesis; absence of septum pellucidum; pericallosal artery; LVNC and Ebstein’s anomaly. A high-resolution microarray analysis demonstrated the presence of a deletion affecting the NONO 3′UTR; leading to a marked hypoexpression of the gene and the complete absence of the protein in cultured amniocytes. This case expands the mutational spectrum of MRXS34, advises to evaluate NONO variants in pre- and postnatal diagnosis of subjects affected by LVNC and other heart defects, especially if associated with corpus callosum anomalies and confirm that CNVs (Copy Number Variants) represent a non-negligible cause of Mendelian disorders.
Journal Article
Complete Pseudo-Anodontia in an Adult Woman with Pseudo-Hypoparathyroidism Type 1a: A New Additional Nonclassical Feature?
2022
Pseudo-anodontia consists in the clinical, not radiographic, absence of teeth, due to failure in their eruption. It has been reported as part of an extremely rare syndrome, named GAPO syndrome. Pseudo-hypoparathyroidism type 1a (PHPT-1a) is a rare condition, characterized by resistance to the parathyroid hormone (PTH), as well as to many other hormones, and resulting in hypocalcemia, hyperphosphatemia, and elevated PTH. We report here the case of a 32-year-old woman with a long-standing history of non-treated hypocalcemia, in the context of an undiagnosed PHPT-1a. She had an intellectual disability, showed clinical features of the Albright hereditary osteodystrophy (AHO) and presented signs of multiple hormone resistances. She received treatment for seizures since the age of six. Examination of her mouth revealed a complete absence of teeth. Treatment of hypocalcemia and hormone deficiencies were started only at 29 years of age. Genetic testing demonstrated the presence of a frameshift variant in the GNAS gene in the proband as well as in her mother. A Single Nucleotide Polymorphism (SNP) array analysis failed to demonstrate pathogenic copy number variants (CNVs) but showed several regions with loss of heterozygosity (LOHs) for a final percentage of 1.75%, compatible with a fifth degree of relationship. Clinical exome sequencing (CES) ruled out any damaging variants in all the teeth agenesis-related genes. In conclusion, although we performed an extensive genetic analysis in search of possible additional gene alterations that could explain the presence of the peculiar phenotypic characteristics observed in our patient, we could not find any additional genetic defects. Our results suggest that the association of genetically confirmed PHPT-1a and complete pseudo-anodontia associated with persistent patchy alopecia areata is a new additional nonclassical feature related to the GNAS pathogenic variant.
Journal Article
Experimental Study of Forced Convective Heat Transfer in a Coiled Flow Inverter Using TiO2–Water Nanofluids
by
Arevalo-Torres, Barbara
,
Lopez-Salinas, Jose L.
,
García-Cuéllar, Alejandro J.
in
coiled flow inverter
,
experiment
,
forced convection
2020
The curved geometry of a coiled flow inverter (CFI) promotes chaotic mixing through a combination of coils and bends. Besides the heat exchanger geometry, the heat transfer can be enhanced by improving the thermophysical properties of the working fluid. In this work, aqueous solutions of dispersed TiO2 nanometer-sized particles (i.e., nanofluids) were prepared and characterized, and their effects on heat transfer were experimentally investigated in a CFI heat exchanger inserted in a forced convective thermal loop. The physical and transport properties of the nanofluids were measured within the temperature and volume concentration domains. The convective heat transfer coefficients were obtained at Reynolds numbers (NRe) and TiO2 nanoparticle volume concentrations ranging from 1400 to 9500 and 0–1.5 v/v%, respectively. The Nusselt number (NNu) in the CFI containing 1.0 v/v% nanofluid was 41–52% higher than in the CFI containing pure base fluid (i.e., water), while the 1.5 v/v% nanofluid increased the NNu by 4–8% compared to water. Two new correlations to predict the NNu of TiO2–water nanofluids in the CFI at Reynolds numbers of 1400 ≤ NRe ≤ 9500 and nanoparticle volume concentrations ranges of 0.2–1.0 v/v% and 0.2–1.5 v/v% are proposed.
Journal Article
Prenatal whole exome sequencing detects a new homozygous fukutin (FKTN) mutation in a fetus with an ultrasound suspicion of familial Dandy–Walker malformation
2020
Background Posterior fossa malformations are among the most diagnosed central nervous system (CNS) anomalies detected by ultrasound (US) in prenatal age. We identified the pathogenic gene mutation in a male fetus of 17 weeks of gestation with US suspicion of familial Dandy–Walker spectrum malformation, using Next Generation Sequencing approach in prenatal diagnosis. Methods Whole exome sequencing (WES) approach has been performed on fetal genomic DNA. After reads preprocessing, mapping, variant calling, and annotation, a filtering strategy based on allelic frequency, recessive inheritance, and phenotypic ontologies has been applied. A fetal magnetic resonance imaging (MRI) at 18 weeks of gestation has been performed. An in silico analysis of a potential causative missense variant in the fukutin protein has been carried out through a structural modeling approach. Results We identified a new homozygous missense mutation in fukutin gene (FKTN, NM_006731.2: c.898G>A; NP_006722.2: p.Gly300Arg). Fetal MRI supported molecular findings. Structural modeling analyses indicated a potential pathogenetic mechanism of the variant, through a reduced activation of the sugar moieties, which in turn impairs transfer to dystroglycan and thus its glycosylation. These findings pointed to a redefinition of the US suspicion of recurrence of Dandy–Walker malformation (DWM) to a muscular dystrophy‐dystroglycanopathy type A4. Conclusions The present case confirmed WES as a reliable tool for the prenatal identification of the molecular bases of early‐detected CNS malformations. Prenatal diagnosis of central nervous system (CNS) anomalies following standard diagnostic procedures is challenging. Posterior fossa malformations are among the most diagnosed CNS anomalies detected by ultrasound in prenatal age. Whole exome sequencing (WES) approach on fetal genomic DNA and structural in silico analysis helped redefine a prenatal clinical suspicious of Dandy–Walker malformation to muscular dystrophy dystroglycanopathy Type A through the identification of a new fukutin homozygous missense mutation (NM_006731: c.898G>A; NP_006722.2: p.Gly300Arg). Prenatal diagnosis in cases of nonspecific or early‐detected CNS phenotypes can be lengthy and difficult. Multidisciplinary diagnostic approach combining instrumental (high‐quality fetal magnetic resonance imaging) and molecular analyses (WES) in fetuses with CNS structural anomalies could be a reliable approach.
Journal Article