Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
673 result(s) for "Tracy, Anthony"
Sort by:
The role of leucine and its metabolites in protein and energy metabolism
Leucine (Leu) is a nutritionally essential branched-chain amino acid (BCAA) in animal nutrition. It is usually one of the most abundant amino acids in high-quality protein foods. Leu increases protein synthesis through activation of the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle, adipose tissue and placental cells. Leu promotes energy metabolism (glucose uptake, mitochondrial biogenesis, and fatty acid oxidation) to provide energy for protein synthesis, while inhibiting protein degradation. Approximately 80 % of Leu is normally used for protein synthesis, while the remainder is converted to α-ketoisocaproate (α-KIC) and β-hydroxy-β-methylbutyrate (HMB) in skeletal muscle. Therefore, it has been hypothesized that some of the functions of Leu are modulated by its metabolites. Both α-KIC and HMB have recently received considerable attention as nutritional supplements used to increase protein synthesis, inhibit protein degradation, and regulate energy homeostasis in a variety of in vitro and in vivo models. Leu and its metabolites hold great promise to enhance the growth and health of animals (including humans, birds and fish).
BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin
The circadian clock and aging are intertwined. Disruption to the normal diurnal rhythm accelerates aging and corresponds with telomere shortening. Telomere attrition also correlates with increase cellular senescence and incidence of chronic disease. In this report, we examined diurnal association of White Collar 2 (WC-2) in Neurospora and BMAL1 in zebrafish and mice and found that these circadian transcription factors associate with telomere DNA in a rhythmic fashion. We also identified a circadian rhythm in Telomeric Repeat-containing RNA (TERRA), a lncRNA transcribed from the telomere. The diurnal rhythm in TERRA was lost in the liver of Bmal1-/- mice indicating it is a circadian regulated transcript. There was also a BMAL1-dependent rhythm in H3K9me3 at the telomere in zebrafish brain and mouse liver, and this rhythm was lost with increasing age. Taken together, these results provide evidence that BMAL1 plays a direct role in telomere homeostasis by regulating rhythms in TERRA and heterochromatin. Loss of these rhythms may contribute to telomere erosion during aging.
Dietary Sulfur Amino Acid Restriction and the Integrated Stress Response: Mechanistic Insights
Dietary sulfur amino acid restriction, also referred to as methionine restriction, increases food intake and energy expenditure and alters body composition in rodents, resulting in improved metabolic health and a longer lifespan. Among the known nutrient-responsive signaling pathways, the evolutionary conserved integrated stress response (ISR) is a lesser-understood candidate in mediating the hormetic effects of dietary sulfur amino acid restriction (SAAR). A key feature of the ISR is the concept that a family of protein kinases phosphorylates eukaryotic initiation factor 2 (eIF2), dampening general protein synthesis to conserve cellular resources. This slowed translation simultaneously allows for preferential translation of genes with special sequence features in the 5′ leader. Among this class of mRNAs is activating transcription factor 4 (ATF4), an orchestrator of transcriptional control during nutrient stress. Several ATF4 gene targets help execute key processes affected by SAAR such as lipid metabolism, the transsulfuration pathway, and antioxidant defenses. Exploration of the canonical ISR demonstrates that eIF2 phosphorylation is not necessary for ATF4-driven changes in the transcriptome during SAAR. Additional research is needed to clarify the regulation of ATF4 and its gene targets during SAAR.
GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis
A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier ( SLC ) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa. Prostate cancer is the fourth most common cancer worldwide, affecting over a million people each year. Existing drug treatments work by blocking the effects or reducing the levels of the hormone testosterone. However, these drug regimens are not always effective, so finding alternative treatments is an important area of research. One option is to target the 'integrated stress response', a pathway that acts as a genetic switch, turning on a group of genes that counteract cellular stress and are essential for the survival of cancer cells. The reason cancer cells are under stress is because they are hungry. They need to make a lot of proteins and other metabolic intermediates to grow and divide, which means they need plenty of amino acids, the building blocks that make up proteins and fuel metabolism. Amino acids enter cells through molecular gates called amino acid transporters, and scientists think the integrated stress response might play a role in this process. One of the integrated stress response components is a protein called General Control Nonderepressible 2, or GCN2 for short. In healthy cells, this protein helps to boost amino acid levels when supplies start to run low. Cordova et al. examined human prostate cancer cells to find out what role GCN2 plays in this cancer. In both lab-grown cells and tissue from patients, GCN2 was active and played a critical role in prostate tumor growth by turning on the genes for amino acid transporters to increase the levels of amino acids entering the cancer cells. Deleting the gene for GCN2, or blocking its effects with an experimental drug, slowed the growth of cultured prostate cancer cells and reduced tumor growth in mice. In these early experiments, Cordova et al. did not notice any toxic side effects to healthy tissues. If GCN2 works in the same way in humans as it does in mice, blocking it might help to control prostate cancer growth. The integrated stress response is also active in other cancer types, so the same logic might apply to different tumors. However, before GCN2 blockers can become treatments, researchers need a more complete understanding of their molecular effects.
Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise
Background Ascorbic acid is a water-soluble chain breaking antioxidant. It scavenges free radicals and reactive oxygen species ( ROS ), which are produced during metabolic pathways. Exercise can produce an imbalance between ROS and antioxidants, leading to oxidative stress-related tissue damages. This study was designed to determine the effects of ascorbic acid supplementation on circulating biomarkers of oxidative stress and muscle damage following a single bout of exercise. Methods In a crossover design with a 1 wk. wash-out period, 19 healthy women performed 30 min moderate-intensity cycling after ingesting 1000 mg of ascorbic acid (AA) or placebo. Blood samples were taken immediately before, immediately after and 30 min post-exercise to determine plasma albumin, total protein, glucose, oxidative stress and muscle damage markers. Results Plasma albumin and total protein levels increased immediately after exercise in placebo alongside slight reductions in glucose ( p  = 0.001). These effects were absent in AA cohort. Ferric reducing ability of plasma and vitamin C levels in AA cohort significantly increased after exercise ( p  < 0.05). Superoxide dismutase activity was significantly elevated after exercise ( p  = 0.002) in placebo but not AA. Plasma malondialdehyde did not change after exercise in placebo but was significantly decreased in AA ( p  < 0.05). The exercise protocol promoted slight muscle damage, reflected in significant increases in total creatine kinase in all subjects after exercise. On the other hand, plasma C-reactive protein and lactate dehydrogenase remained unchanged. Conclusion Supplementation with ascorbic acid prior exercise improves antioxidant power but does not prevent muscle damage.
The exercise metabolome: acute aerobic and anaerobic signatures
Exercise modality differentially alters body composition and physical performance. Metabolic changes underlying these outcomes can be tracked through assessment of circulating metabolites. Here, global responses to an acute bout of aerobic or anaerobic exercise were compared in the serum of male and female subjects using a discovery-based metabolomics platform. On separate days, 40 healthy, active participants completed 45 min of aerobic cycling or resistance exercise, and blood samples were collected at rest, immediately after (T1) and 1 hour post-exercise (T2) to examine the serum metabolomic landscape. The two exercise metabolomes appeared more similar than different in this healthy cohort. Overall, metabolomic signatures of both exercise modalities were markedly altered from rest at T1, and returned toward baseline by T2. Metabolomic perturbations at T1 and the T1-T2 rate of recovery post-exercise were greater following aerobic cycling than resistance exercise. Shared signatures included elevations in purine metabolism, substrate catabolism and mobilization, and inflammatory signaling. Aerobic exercise resulted in greater substrate diversity and use of fatty acids, whereas resistance exercise displayed higher purine turnover and glycolytic flux. Individual metabolite differences between conditions were seen in magnitude but not direction. Metabolomic signatures of the exercise responses appeared fairly robust across exercise modalities. An initial perturbation and subsequent shift toward recovery by an hour post-exercise defined the signature in our healthy cohort. The expedited recovery following aerobic cycling may be explained by globally elevated lipid metabolism.
The Antihypertensive Guanabenz Exacerbates Integrated Stress Response and Disrupts the Brain Circadian Clock
The circadian clock regulates a variety of biological processes that are normally synchronized with the solar day. Disruption of circadian rhythms is associated with health problems. Understanding the signaling mechanisms that couple cell physiology and metabolism to circadian timekeeping will help to develop novel therapeutic strategies. The integrated stress response (ISR) is activated by the cellular stressors to maintain physiological homeostasis by orchestrating mRNA translation. Aberrant ISR has been found in a number of neurological diseases that exhibit disrupted circadian rhythms and sleep. Recent work has started to uncover a critical role for the ISR in regulating the physiology of the circadian clock. Guanabenz (2,6-dichlorobenzylidene aminoguanidine acetate) is an orally bioavailable α2-adrenergic receptor agonist that has been used as an antihypertensive for decades. Recent studies demonstrated that guanabenz can regulate the ISR. Here, we assessed the effects of guanabenz on cellular and behavioral circadian rhythms using a multidisciplinary approach. We found that guanabenz can induce the ISR by increasing eIF2α phosphorylation in cultured fibroblasts as well as in the mouse brain. The hyperphosphorylation of eIF2α by guanabenz is associated with the shortened circadian period in cells and animals and the disruption of behavioral circadian rhythms in mice. Guanabenz administration disrupted circadian oscillations of the clock protein Per1 and Per2 in the mouse suprachiasmatic nucleus, the master pacemaker. These results uncover a significant yet previously unidentified role of guanabenz in regulating circadian rhythms and indicate that exacerbated ISR activation can impair the functions of the brain’s circadian clock by disrupting clock gene expression.
Circulating metabolite homeostasis achieved through mass action
Homeostasis maintains serum metabolites within physiological ranges. For glucose, this requires insulin, which suppresses glucose production while accelerating its consumption. For other circulating metabolites, a comparable master regulator has yet to be discovered. Here we show that, in mice, many circulating metabolites are cleared via the tricarboxylic acid cycle (TCA) cycle in linear proportionality to their circulating concentration. Abundant circulating metabolites (essential amino acids, serine, alanine, citrate, 3-hydroxybutyrate) were administered intravenously in perturbative amounts and their fluxes were measured using isotope labelling. The increased circulating concentrations induced by the perturbative infusions hardly altered production fluxes while linearly enhancing consumption fluxes and TCA contributions. The same mass action relationship between concentration and consumption flux largely held across feeding, fasting and high- and low-protein diets, with amino acid homeostasis during fasting further supported by enhanced endogenous protein catabolism. Thus, despite the copious regulatory machinery in mammals, circulating metabolite homeostasis is achieved substantially through mass action-driven oxidation. While glucose homeostasis in the circulation is tightly controlled by insulin and other hormones, dedicated hormonal regulators do not exist for most other circulating metabolites. Using perturbative metabolite infusions with isotope labelling in mice, Li et al. show that homeostasis of many circulating metabolites is considerably regulated through mass action-driven oxidation.
Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase
The anti-leukemic agent asparaginase activates the integrated stress response (ISR) kinase GCN2 and inhibits signaling via mechanistic target of rapamycin complex 1 (mTORC1). The study objective was to investigate the protective role of activating transcription factor 4 (ATF4) in controlling the hepatic transcriptome and mediating GCN2-mTORC1 signaling during asparaginase. We compared global gene expression patterns in livers from wildtype, Gcn2 −/− , and Atf4 −/− mice treated with asparaginase or excipient and further explored selected responses in livers from Atf4 +/− mice. Here, we show that ATF4 controls a hepatic gene expression profile that overlaps with GCN2 but is not required for downregulation of mTORC1 during asparaginase. Ingenuity pathway analysis indicates GCN2 independently influences inflammation-mediated hepatic processes whereas ATF4 uniquely associates with cholesterol metabolism and endoplasmic reticulum (ER) stress. Livers from Atf4 −/− or Atf4 +/− mice displayed an amplification of the amino acid response and ER stress response transcriptional signatures. In contrast, reduction in hepatic mTORC1 signaling was retained in Atf4 −/− mice treated with asparaginase. Conclusions : GCN2 and ATF4 serve complementary roles in the hepatic response to asparaginase. GCN2 functions to limit inflammation and mTORC1 signaling whereas ATF4 serves to limit the amino acid response and prevent ER stress during amino acid depletion by asparaginase.
Uncharged tRNA and Sensing of Amino Acid Deficiency in Mammalian Piriform Cortex
Recognizing a deficiency of indispensable amino acids (IAAs) for protein synthesis is vital for dietary selection in metazoans, including humans. Cells in the brain's anterior piriform cortex (APC) are sensitive to IAA deficiency, signaling diet rejection and foraging for complementary IAA sources, but the mechanism is unknown. Here we report that the mechanism for recognizing IAA-deficient foods follows the conserved general control (GC) system, wherein uncharged transfer RNA induces phosphorylation of eukaryotic initiation factor 2 (eIF2) via the GC nonderepressing 2 (GCN2) kinase. Thus, a basic mechanism of nutritional stress management functions in mammalian brain to guide food selection for survival.