Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
104 result(s) for "Trapani, Stefano"
Sort by:
Smart Sensors Applications for a New Paradigm of a Production Line
Industrial plants are going to face a deep renewing process within the Industry 4.0 scenario. New paradigms of production lines are foreseen in the very near future, characterized by a strict collaboration between humans and robots and by a high degree of flexibility. Such envisaged improvements will require the smart use of proper sensors at very different levels. This paper investigates three different aspects of this industrial renewing process, based on three different ways of exploiting sensors, toward a new paradigm of a production line. The provided contributions, offering various types of innovation and integration, are relative to: (i) a virtual sensor approach for manual guidance, increasing the potentialities of a standard industrial manipulator, (ii) a smart manufacturing solution to assist the operator’s activity in manual assembly stations, through an original exploitation of multiple sensors, and (iii) the development of an advanced robotic architecture for a flexible production line, in which a team of autonomous mobile robots acts as a meta-sensor net supporting traditional automated guided vehicles. Accurate analyses of existing state-of-the-art solutions compared with the proposed ones are offered for the considered issues.
Development of a Virtual Collision Sensor for Industrial Robots
Collision detection is a fundamental issue for the safety of a robotic cell. While several common methods require specific sensors or the knowledge of the robot dynamic model, the proposed solution is constituted by a virtual collision sensor for industrial manipulators, which requires as inputs only the motor currents measured by the standard sensors that equip a manipulator and the estimated currents provided by an internal dynamic model of the robot (i.e., the one used inside its controller), whose structure, parameters and accuracy are not known. The collision detection is achieved by comparing the absolute value of the current residue with a time-varying, positive-valued threshold function, including an estimate of the model error and a bias term, corresponding to the minimum collision torque to be detected. The value of such a term, defining the sensor sensitivity, can be simply imposed as constant, or automatically customized for a specific robotic application through a learning phase and a subsequent adaptation process, to achieve a more robust and faster collision detection, as well as the avoidance of any false collision warnings, even in case of slow variations of the robot behavior. Experimental results are provided to confirm the validity of the proposed solution, which is already adopted in some industrial scenarios.
Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization
Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σ B factor from the human pathogen, Mycobacterium tuberculosis , induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units. Cryo-electron microscopy revealed a pseudo-symmetric structure of the RNAP octamer in which RNAP protomers are captured in an auto-inhibited state and display an open-clamp conformation. The structure shows that σ B is sequestered by the RNAP flap and clamp domains. The transcriptional activator RbpA prevented octamer formation by promoting the initiation-competent RNAP conformation. Our results reveal that a non-conserved region of σ is an allosteric controller of transcription initiation and demonstrate how basal transcription factors can regulate gene expression by modulating the RNAP holoenzyme assembly and hibernation. Biological processes can be regulated via oligomerization of macromolecules into high-order symmetric structures. Here, authors reported high-order structure of RNA polymerase and its role in regulation of gene expression in pathogenic bacterium.
MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus
In Myxococcus xanthus , directed movement is controlled by pole-to-pole oscillations of the small GTPase MglA and its GAP MglB. Direction reversals require that MglA is inactivated by MglB, yet paradoxically MglA and MglB are located at opposite poles at reversal initiation. Here we report the complete MglA/MglB structural cycle combined to GAP kinetics and in vivo motility assays, which uncovers that MglA is a three-state GTPase and suggests a molecular mechanism for concerted MglA/MglB relocalizations. We show that MglA has an atypical GTP-bound state (MglA-GTP*) that is refractory to MglB and is re-sensitized by a feedback mechanism operated by MglA-GDP. By identifying and mutating the pole-binding region of MglB, we then provide evidence that the MglA-GTP* state exists in vivo. These data support a model in which MglA-GDP acts as a soluble messenger to convert polar MglA-GTP* into a diffusible MglA-GTP species that re-localizes to the opposite pole during reversals. In Myxococcus xanthus , directed movement is controlled by pole-to-pole oscillations of the small GTPase MglA and its GAP MglB. Here authors report the complete MglA/MglB structural cycle and uncover that MglA is a three-state GTPase that adopts an atypical GTP-bound state that is refractory to inactivation by MglB.
Estimates for the average scalar curvature of the Weil–Petersson metric on the moduli space M¯g
We give a precise estimate for the average scalar curvature of the Weil–Petersson metric on the moduli space M ¯ g as g → ∞ up to the order 1 / g 2 .
Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission
Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.
Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission
Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 ([Gly.sup.297]Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The [Gly.sup.297]Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.
Large deviations for posterior distributions on the parameter of a multivariate AR(p) process
We prove the large deviation principle for the posterior distributions on the (unknown) parameter of a multivariate autoregressive process with i.i.d. Normal innovations. As a particular case, we recover a previous result for univariate first-order autoregressive processes. We also show that the rate function can be expressed in terms of the divergence between two spectral densities.[PUBLICATION ABSTRACT]