Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Traxler, Elisabeth"
Sort by:
BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design
2019
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
A structure-based design allows the development of a potent PROTAC to degrade BAF ATPase subunits SMARCA2 and SMARCA4 via recruitment of E3 ubiquitin ligase VHL and induce cancer cell death.
Journal Article
Effect of cachexia on bone turnover in cancer patients: a case-control study
by
Zwickl, Hannes
,
Hackner, Klaus
,
Podar, Klaus
in
Anemia
,
Biomedical and Life Sciences
,
Biomedicine
2021
Background
Increased bone turnover is frequently observed in advanced cancer and predominantly related to bone metastases or therapy. Cachexia represents an important cause of morbidity and mortality in cancer patients. Key features are weight loss, muscle wasting and chronic inflammation, which induce profound metabolic changes in several organs, including the bone. However, whether cachexia contributes to abnormal bone metabolism in cancer patients is unknown. Aim of the present study was to determine the potential correlation of bone turnover markers with body composition and laboratory parameters in treatment-naïve cancer patients.
Methods
In this cross-sectional study we measured the levels of carboxy terminal telopeptide of collagen (CTX), an indicator of bone resorption, as well as osteocalcin (Ocn) and procollagen type I N-terminal propeptide (PINP), indicators of bone formation, in 52 cancer patients and correlated with body composition and laboratory parameters. Univariate and multivariate logistic analysis were performed to identify determinants of negative bone remodeling balance, estimated by CTX/Ocn and CTX/PINP ratio.
Results
Based on weight loss, body mass index and muscle mass, patients were divided into a cachectic (59.6%) and a control (40.4%) group. After correcting for the presence of bone metastases, our results showed a significant upregulation of CTX in cachectic patients compared to non-cachectic cancer patients (median 0.38 vs 0.27 ng/mL,
p
< 0.05), with no difference in Ocn and PINP levels (mean 14 vs. 16 ng/ml,
p
= 0.2 and median 32 vs. 26 μg/L,
p
= 0.5, respectively). In addition, the CTX/Ocn and the CTX/PINP ratio were indicative of bone resorption in 68% and 60% of cachexia patients, respectively (vs. 20% and 31% in the control group,
p
= 0.002 and
p
= 0.06). The main determinants of the unbalanced bone turnover were hypoalbuminemia for the CTX/Ocn ratio (OR 19.8,
p <
0.01) and high CRP for the CTX/PINP ratio (OR 5.3,
p <
0.01) in the multivariate regression analysis.
Conclusions
CTX is substantially higher in cachectic patients compared to non-cachectic oncological patients and hypoalbuminemia as well as elevated CRP concentrations are independent predictors of a negative bone remodeling balance in cancer patients. These results strongly indicate that cachexia correlates with exacerbated bone turnover in cancer.
Journal Article
Dual therapeutic targeting of MYC and JUNB transcriptional programs for enhanced anti-myeloma activity
2024
Deregulation of transcription factors (TFs) leading to uncontrolled proliferation of tumor cells within the microenvironment represents a hallmark of cancer. However, the biological and clinical impact of transcriptional interference, particularly in multiple myeloma (MM) cells, remains poorly understood. The present study shows for the first time that MYC and JUNB, two crucial TFs implicated in MM pathogenesis, orchestrate distinct transcriptional programs. Specifically, our data revealed that expression levels of MYC, JUNB, and their respective downstream targets do not correlate and that their global chromatin-binding patterns are not significantly overlapping. Mechanistically, MYC expression was not affected by JUNB knockdown, and conversely, JUNB expression and transcriptional activity were not affected by MYC knockdown. Moreover, suppression of MYC levels in MM cells
via
targeting the master regulator BRD4 by either siRNA-mediated knockdown or treatment with the novel
proteolysis targeting chimera
(PROTAC) MZ-1 overcame bone marrow (BM) stroma cell/IL-6-induced MYC- but not MEK-dependent JUNB-upregulation and transcriptional activity. Consequently, targeting of the two non-overlapping MYC- and JUNB-transcriptoms by MZ-1 in combination with genetic or pharmacological JUNB-targeting approaches synergistically enhanced MM cell death, both in 2D and our novel dynamic 3D models of the BM milieu as well as in murine xenografts. In summary, our data emphasize the opportunity to employ MYC and JUNB dual-targeting treatment strategies in MM as another exciting approach to further improve patient outcomes.
Journal Article
Publisher Correction: BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design
2019
In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read “The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis
12,13
.” The affected text of the right column should read “SMARCA2/4
BD
inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel−Lindau (VHL) or cereblon
5,6,10,11,25,26,27
.” The errors have been corrected in the PDF version of the paper.
Journal Article
Safety and tolerability of topically administered autologous, apoptotic PBMC secretome (APOSEC) in dermal wounds: a randomized Phase 1 trial (MARSYAS I)
2017
Developing effective therapies against chronic wound healing deficiencies is a global priority. Thus we evaluated the safety of two different doses of topically administered autologous APOSEC, the secretome of apoptotic peripheral blood mononuclear cells (PBMCs), in healthy male volunteers with artificial dermal wounds. Ten healthy men were enrolled in a single-center, randomized, double-blinded, placebo-controlled phase 1 trial. Two artificial wounds at the upper arm were generated using a 4-mm punch biopsy. Each participant was treated with both topically applied APOSEC and placebo in NuGel for 7 consecutive days. The volunteers were randomized into two groups: a low-dose group (A) receiving the supernatant of 12.5 × 10
6
PBMCs and a high-dose group (B) receiving an equivalent of 25 × 10
6
PBMCs resuspended in NuGel Hydrogel. Irradiated medium served as placebo. The primary outcome was the tolerability of the topical application of APOSEC. All adverse events were recorded until 17 days after the biopsy. Local tolerability assessment was measured on a 4-point scale. Secondary outcomes were wound closure and epithelization at day 7. No therapy-related serious adverse events occurred in any of the participants, and both low- and high-dose treatments were well tolerated. Wound closure was not affected by APOSEC therapy.
Journal Article
Three‐Dimensional Data Preparation and Immersive Mission‐Spanning Visualization and Analysis of Mars 2020 Mastcam‐Z Stereo Image Sequences
2023
The Mars 2020 Mastcam‐Z stereo camera investigation enables the generation of three dimension (3D) data products needed to visualize and analyze rocks, outcrops, and other geological and aeolian features. The Planetary Robotics Vision Processing framework “PRoViP” as well as the Instrument Data System on a tactical—sol‐by‐sol—timeframe generate 3D vision products, such as panoramas, distance maps, and textured meshes. Structure‐from‐motion used by the Advanced Science Targeting Toolkit for Robotic Operations (ASTTRO) “Landform” tool and long baseline stereo pipelines add to the 3D vision products' suite on various scales. Data fusion with textured meshes from satellite imagery and 3D data analysis and interpretation of the resulting large 3D data sets is realized by visualization assets like the Planetary Robotics Vision 3D Viewer PRo3D, the 3D Geographical Information System GIS CAMP (Campaign Analysis Mapping and Planning tool), the ASTTRO 3D data presentation and targeting tool, and the Mastcam‐Z planning tool Viewpoint. The pipelines' workflows and the user‐oriented features of the visualization assets, shared across the Mars 2020 mission, are reported. The individual role and interplay, complements and synergies of the individual frameworks are explained. Emphasis is laid on publicly available 3D vision data products and tools. A representative set of scientific use cases from planetary geology, aeolian activity, soil analysis and impact science illustrates the scientific workflow, and public data deployment modes are briefly outlined, demonstrating that 3D vision processing and visualization is an essential mission‐wide asset to solve important planetary science questions such as prevailing wind direction, soil composition, or geologic origin. Plain Language Summary Image processing enables to describe the surface of Mars in three dimension (3D) using the Mastcam‐Z stereo cameras' images. The 3D reconstruction of the rocks, geological outcrops, as well as aeolian and mineralogical features, are crucial for understanding the planet's past. Image processing tools to reconstruct the surface of Mars from the images are available to the Mars 2020 Team, generating 3D data products with various information about the surface on Mars like elevation maps or distance maps that record the 3D coordinates of each point. To interpret these products, tools needed for their visualization and analysis are presented here. In a combination with data from other sensors or sources—including 3D models obtained from satellite, and at different scales the interpretation of the processed products is enhanced. The reader learns about the synergies and interplay between these tools, including publicly available tools. Demonstrative planetary science examples, processed by the Mastcam‐Z science team with the above mentioned tools, are presented. Geological features, such as wind activity, soil analysis, and impact science, are analyzed, illustrating the scientific work carried out and in particular the benefit of 3D vision processing and visualization for such analysis work. Key Points The Mars 2020 Mastcam‐Z investigation's stereoscopic zoom camera pair enables the assembly of 3D models of the rover environment Processing and visualization for scientific 3D data exploitation establishes mission science in full knowledge about spatial relationships Important scientific use cases for Mastcam‐Z 3D vision processing and visualization illustrate the importance of 3D for Mars science
Journal Article
Different pro-angiogenic potential of γ-irradiated PBMC-derived secretome and its subfractions
2018
Secretomes from various cell sources exert strong regenerative activities on numerous organs, including the skin. Although secretomes consist of many diverse components, a growing body of evidence suggests that small extracellular vesicles (EVs) account for their regenerative capacity. We previously demonstrated that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCs) exhibits wound healing capacity. Therefore, we sought to dissect the molecular composition of EVs present in the secretome and compared wound healing-related activities of these EVs to other subfractions of the secretome and the fully supplemented secretome (MNC
aposec
). Compared to EVs derived from non-irradiated PBMCs, γ-irradiation significantly increased the size and number and changed the composition of released EVs. Detailed characterization of the molecular components of EVs,
i.e
. miRNA, proteins, and lipids, derived from irradiated PBMCs revealed a strong association with regenerative processes. Reporter gene assays and aortic ring sprouting assays revealed diminished activity of the subfractions compared to MNC
aposec
. In addition, we showed that MNC
aposec
accelerated wound closure in a diabetic mouse model. Taken together, our results suggest that secretome-based wound healing represents a promising new therapeutic avenue, and strongly recommend using the complete secretome instead of purified subfractions, such as EVs, to exploit its full regenerative capacity.
Journal Article
Heat shock protein 27 as a predictor of prognosis in patients admitted to hospital with acute COPD exacerbation
by
Klepetko, Walter
,
Traxler, Denise
,
Graf, Alexandra
in
Biochemistry
,
Biomarkers
,
Biomarkers - blood
2020
Episodes of acute exacerbations are major drivers of hospitalisation and death from COPD. To date, there are no objective biomarkers of disease activity or biomarkers to predict patient outcome. In this study, 211 patients hospitalised for an acute exacerbation of COPD have been included. At the time of admission, routine blood tests have been performed including complete blood count, C-reactive protein, cardiac troponin T and NT-proBNP. Heat shock protein 27 (HSP27) serum concentrations were determined at time of admission, discharge and 180 days after discharge by ELISA. We were able to demonstrate significantly increased HSP27 serum concentrations in COPD patients at time of admission to hospital as compared to HSP27 concentrations obtained 180 days after discharge. In univariable Cox regression analyses, a HSP27 serum concentration ≥ 3098 pg/mL determined at admission was a predictor of all-cause mortality at 90 days, 180 days, 1 year and 3 years. In multivariable analyses, an increased HSP27 serum concentration at admission retained its prognostic ability with respect to all-cause mortality for up to 1-year follow-up. However, an increased HSP27 serum concentration at admission was not an independent predictor of long-term all-cause mortality at 3 years. Elevated serum HSP27 concentrations significantly predicted short-term mortality in patients admitted to hospital with acute exacerbation of COPD and could help to improve outcomes by identifying high-risk patients.
Journal Article
4,5-Dianilinophthalimide: A Protein-Tyrosine Kinase Inhibitor with Selectivity for the Epidermal Growth Factor Receptor Signal Transduction Pathway and Potent in vivo Antitumor Activity
1994
Deregulated signal transduction via the epidermal growth factor receptor (EGF-R) family of protein-tyrosine kinase growth factor receptors is associated with proliferative diseases. We describe a class of compounds (4,5-dianilinophthalimides) that inhibit the EGF-R protein-tyrosine kinase in vitro with high selectivity. In cells, 4,5-dianilinophthalimide selectively inhibited both ligand-induced EGF-R and p185c-erbB2autophosphorylation and c-fos mRNA induction. Antitumor activity could be demonstrated in vivo against xenografts of the A431 and SK-OV-3 tumors, which overexpress the EGF-R and p185c-erbB2, respectively. In contrast, a platelet-derived growth factor-driven tumor was not inhibited by 4,5-dianilinophthalimide, which is compatible with its cellular selectivity and hypothesized mechanism of action. No overt cumulative toxicity was observed during treatment even though high efficacy was observed, indicating a good therapeutic window. 4,5-Dianilinophthalimides may offer therapeutic agents for the treatment of hyperproliferative diseases that overexpress EGF-R family protein-tyrosine kinases or their ligands.
Journal Article