Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Triem, Sarah"
Sort by:
Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study
by
Zarbock, Alexander
,
Kellum, John A
,
Triem, Sarah
in
Acute Kidney Injury - etiology
,
Acute Kidney Injury - physiopathology
,
Acute Kidney Injury - urine
2019
Cardiac surgery is associated with a high risk of postoperative acute kidney injury (AKI) and subsequent loss of kidney function. We explored the clinical utility of urinary dickkopf-3 (DKK3), a renal tubular stress marker, for preoperative identification of patients at risk for AKI and subsequent kidney function loss.
This observational cohort study included patients who had cardiac surgery in a derivation cohort and those who had cardiac surgery in a validation cohort (RenalRIP trial). The study comprised consecutive patients who had elective cardiac surgery at the Saarland University Medical Centre (Homburg, Germany; derivation cohort) and those undergoing elective cardiac surgery (selected on the basis of a Cleveland Clinical Foundation score of 6 or higher) who were enrolled in the prospective RenalRIP multicentre trial (validation cohort) and who were randomly assigned to remote ischaemic preconditioning or a sham procedure. The association between the ratio of preoperative urinary concentrations of DKK3 to creatinine (DKK3:creatinine) and postoperative AKI, defined according to the Kidney Disease Improving Global Outcomes criteria, and subsequent kidney function loss, as determined by estimated glomerular filtration rate, was assessed.
In the 733 patient in the derivation cohort, urinary concentrations of DKK3 to creatinine that were higher than 471 pg/mg were associated with significantly increased risk for AKI (odds ratio [OR] 1·65, 95% CI 1·10–2·47, p=0·015), independent of baseline kidney function. Compared with clinical and other laboratory measurements, urinary concentrations of DKK3:creatinine significantly improved AKI prediction (net reclassification improvement 0·32, 95% CI 0·23–0·42, p<0·0001). High urinary DKK3:creatinine concentrations were independently associated with significantly lower kidney function at hospital discharge and after a median follow-up of 820 days (IQR 733–910). In the RenalRIP trial, preoperative urinary DKK3:creatinine concentrations higher than 471 pg/mg were associated with a significantly higher risk for AKI (OR 1·94, 95% CI 1·08–3·47, p=0·026), persistent renal dysfunction (OR 6·67, 1·67–26·61, p=0·0072), and dialysis dependency (OR 13·57, 1·50–122·77, p=0·020) after 90 days compared with DKK3:creatinine concentrations of 471 pg/mg or less. Urinary DKK3:creatinine concentrations higher than 471 pg/mg were associated with significantly higher risk for AKI (OR 2·79, 95% CI 1·45–5·37) and persistent renal dysfunction (OR 3·82, 1·32–11·05) only in patients having a sham procedure, but not remote ischaemic preconditioning (AKI OR 1·35, 0·76–2·39 and persistent renal dysfunction OR 1·05, 0·12–9·45).
Preoperative urinary DKK3 is an independent predictor for postoperative AKI and for subsequent loss of kidney function. Urinary DKK3 might aid in the identification of patients in whom preventive treatment strategies are effective.
No study funding.
Journal Article
Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation
by
Körbel, Christina
,
Reiser, Jochen
,
Niemeyer, Barbara A.
in
631/250/2504/342
,
631/250/256/2177
,
631/250/262/2106/2517
2020
NLRP3-inflammasome-driven inflammation is involved in the pathogenesis of a variety of diseases. Identification of endogenous inflammasome activators is essential for the development of new anti-inflammatory treatment strategies. Here, we identified that apolipoprotein C3 (ApoC3) activates the NLRP3 inflammasome in human monocytes by inducing an alternative NLRP3 inflammasome via caspase-8 and dimerization of Toll-like receptors 2 and 4. Alternative inflammasome activation in human monocytes is mediated by the Toll-like receptor adapter protein SCIMP. This triggers Lyn/Syk-dependent calcium entry and the production of reactive oxygen species, leading to activation of caspase-8. In humanized mouse models, ApoC3 activated human monocytes in vivo to impede endothelial regeneration and promote kidney injury in an NLRP3- and caspase-8-dependent manner. These data provide new insights into the regulation of the NLRP3 inflammasome and the pathophysiological role of triglyceride-rich lipoproteins containing ApoC3. Targeting ApoC3 might prevent organ damage and provide an anti-inflammatory treatment for vascular and kidney diseases.
Overabundance of apolipoprotein C3 (ApoC3) is associated with atherosclerosis. Speer and colleagues demonstrate that ApoC3 activates the NLRP3 inflammasome via a non-canonical pathway contributing to inflammation and development of atherosclerosis.
Journal Article