Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
86 result(s) for "Tripet, Frederic"
Sort by:
The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities
Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.
Natural variation in timing of egg hatching, response to water agitation, and bidirectional selection of early and late hatching strains of the malaria mosquito Anopheles gambiae sensu lato
Background Eggs of anopheline mosquitoes hatch within a few days of laying and require high levels of humidity to survive. Assessing natural variation in egg hatching and its environmental and genetic determinants in sibling species of the malaria vector Anopheles gambiae s.l. is important for understanding their adaptation to variable aquatic habitats. Crucially, it can also inform insectary rearing practices toward the optimization of mosquito production for genetic vector control strategies. Methods Hatching rates and timing of egg hatching in long-established and recently colonized strains of An. gambiae s.s, Anopheles arabiensis , and Anopheles coluzzii , were compared under still water conditions (26 ℃) and with cold (4 ℃) and (15 ℃) water agitation regimes. Next, early and late hatching strains of the recently colonized An. coluzzii VK colony were generated through bidirectional selection for 18–23 generations to detect a genetic component for this trait. Results Hatching rates differed significantly between species and treatments. The older An. arabiensis Senn and An. gambiae s.s. Kisumu strains had the highest proportion of hatching and preferred the nonagitation treatment at 26 °C. In contrast, the more recently colonized An. coluzzii VK and An. arabiensis Rufisque strains had lower overall hatching success but responded strongly to agitation at 4 °C, while the An. coluzzii Mopti strain did not significantly respond to water agitation. In all strains, eggs hatching started at day 2 and continued till day 5 in the older strains, whilst it was more staggered and extended up to day 6 in the younger strains. Bidirectional selection for early and late hatching over many generations resulted in early hatching selected strains with eggs hatching 2–3 days earlier than in late hatching ones indicating a significant heritable component for these traits. Conclusions Water agitation and temperature and age of colonization are likely important determinants of egg hatching in natural An. gambiae s.l. populations. Current rearing protocols systematically select for fast hatching and result in the progressive loss of staggered egg hatching in older laboratory strains. The selection of novel slow-hatching strains may prove instrumental to enable the mass production, shipping, and release of Anopheles mosquitoes across Africa as part of genetic vector control programs. Graphical Abstract
Standardised bioassays reveal that mosquitoes learn to avoid compounds used in chemical vector control after a single sub-lethal exposure
Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.
Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes
Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex. Release of genetically-modified sterile mosquitoes is a potential method of malaria control but has yet to be tested in the field. Here, the authors perform a mark-release-recapture experiment and show that genetically-modified mosquitoes have reduced survival and dispersal compared to wild-types.
Contrasted Fitness Costs of Docking and Antibacterial Constructs in the EE and EVida3 Strains Validates Two-Phase Anopheles gambiae Genetic Transformation System
The deployment of transgenic mosquitoes carrying genes for refractoriness to malaria has long been seen as a futuristic scenario riddled with technical difficulties. The integration of anti-malarial effector genes and a gene-drive system into the mosquito genome without affecting mosquito fitness is recognized as critical to the success of this malaria control strategy. Here we conducted detailed fitness studies of two Anopheles gambiae s.s. transgenic lines recently developed using a two-phase targeted genetic transformation system. In replicated cage-invasion experiments, males and females of the EE Phase-1 docking strain and EVida3 Phase-2 strain loaded with an antimicrobial peptide (AMP) expressed upon blood-feeding, were mixed with individuals of a recently-colonized strain of the Mopti chromosomal form. The experimental design enabled us to detect initial strain reproductive success differences, assortative mating and hybrid vigor that may characterize mosquito release situations. In addition, the potential fitness costs of the unloaded Phase-1 and loaded Phase-2 genetic constructs, independent of the strains' original genetic backgrounds, were estimated between the 1(st) instar larvae, pupae and adult stages over 10 generations. The Phase-1 unloaded docking cassette was found to have significantly lower allelic fitness relative to the wild type allele during larval development. However, overall genotypic fitness was comparable to the wild type allele across all stages leading to stable equilibrium in all replicates. In contrast, the Phase-2 construct expressing EVida3 disappeared from all replicates within 10 generations due to lower fitness of hemi- and homozygous larvae, suggesting costly background AMP expression and/or of the DsRed2 marker. This is the first study to effectively partition independent fitness stage-specific determinants in unloaded and loaded transgenic strains of a Phase-1-2 transformation system. Critically, the high fitness of the Phase-1 docking strain makes it the ideal model system for measuring the genetic load of novel candidate anti-malarial molecules in vivo.
Seasonal malaria vector and transmission dynamics in western Burkina Faso
Background In the context of widespread mosquito resistance to currently available pesticides, novel, precise genetic vector control methods aimed at population suppression or trait replacement are a potentially powerful approach that could complement existing malaria elimination interventions. Such methods require knowledge of vector population composition, dynamics, behaviour and role in transmission. Here were characterized these parameters in three representative villages, Bana, Pala and Souroukoudingan, of the Sudano-Sahelian belt of Burkina Faso, a region where bed net campaigns have recently intensified. Methods From July 2012 to November 2015, adult mosquitoes were collected monthly using pyrethroid spray catches (PSC) and human landing catches (HLC) in each village. Larval habitat prospections assessed breeding sites abundance at each site. Mosquitoes collected by PSC were identified morphologically, and then by molecular technique to species where required, to reveal the seasonal dynamics of local vectors. Monthly entomological inoculation rates (EIR) that reflect malaria transmission dynamics were estimated by combining the HLC data with mosquito sporozoite infection rates (SIR) identified through ELISA-CSP. Finally, population and EIR fluctuations were fit to locally-collected rainfall data to highlight the strong seasonal determinants of mosquito abundance and malaria transmission in this region. Results The principal malaria vectors found were in the Anopheles gambiae complex. Mosquito abundance peaked during the rainy season, but there was variation in vector species composition between villages. Mean survey HLC and SIR were similar across villages and ranged from 18 to 48 mosquitoes/person/night and from 3.1 to 6.6% prevalence. The resulting monthly EIRs were extremely high during the rainy season (0.91–2.35 infectious bites/person/day) but decreased substantially in the dry season (0.03–0.22). Vector and malaria transmission dynamics generally tracked seasonal rainfall variations, and the highest mosquito abundances and EIRs occurred in the rainy season. However, despite low residual mosquito populations, mosquitoes infected with malaria parasites remained present in the dry season. Conclusion These results highlight the important vector control challenge facing countries with high EIR despite the recent campaigns of bed net distribution. As demonstrated in these villages, malaria transmission is sustained for large parts of the year by a very high vector abundance and high sporozoite prevalence, resulting in seasonal patterns of hyper and hypo-endemicity. There is, therefore, an urgent need for additional vector control tools that can target endo and exophillic mosquito populations.
Semi-field experiments reveal contrasted predation and movement patterns of aquatic macroinvertebrate predators of Anopheles gambiae larvae
BackgroundMembers of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches. This study experimentally evaluated the predation efficacy and foraging strategy of three common aquatic macroinvertebrate predators of An. gambiae, diving beetles (Coleoptera), backswimmers (Hemiptera), and dragonfly nymphs (Odonata) in a semi-field system in South-Eastern Tanzania.MethodsAn array of alternating small and large basins used as aquatic habitats was created in two compartments of a semi-field system and filled with well water. Field-collected adult diving beetles, backswimmers or dragonfly nymphs were randomly assigned to these habitats and Anopheles arabiensis larvae were added as prey in half of the habitats. The number of mosquito larvae consumed, predator mobility across habitats and mortality were recorded at 24, 48 and 72 h.ResultsThe presence of An. gambiae larvae in habitats significantly increased the survival of backswimmer and dragonfly nymphs, which are not mobile. In contrast, diving beetles survived well under any initial condition by preferentially flying away from habitats without prey to nearby larger habitats with prey. The larval predation rates of predacious diving beetle, backswimmer and dragonfly nymphs were stable over time at a mean of 3.2, 7.0 and 9.6 larvae consumed each day.ConclusionThis study demonstrates that aquatic macroinvertebrate predators display adaptive foraging behaviour in response to prey presence and aquatic habitat size. It also confirms the ability of these predators to significantly reduce An. gambiae larval densities in aquatic habitats, thus their potential for consideration as additional biocontrol tools for mosquito population reduction.
High-resolution species assignment of Anopheles mosquitoes using k-mer distances on targeted sequences
The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate large-scale monitoring of Anopheles species diversity. Combining information from the 62 nuclear amplicons present in the ANOSPP panel allows for a more senstive and specific species assignment than single gene (e.g. COI) barcoding, which is desirable in the light of permeable species boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and Variational Autoencoders (VAE), which we apply to k- mers resulting from the ANOSPP amplicon sequences in order to hierarchically assign species identity. The NN step assigns a sample to a species-group by comparing the k -mers arising from each haplotype’s amplicon sequence to a reference database. The VAE step is required to distinguish between closely related species, and also has sufficient resolution to reveal population structure within species. In tests on independent samples with over 80% amplicon coverage, NNoVAE correctly classifies to species level 98% of samples within the An. gambiae complex and 89% of samples outside the complex. We apply NNoVAE to over two thousand new samples from Burkina Faso and Gabon, identifying unexpected species in Gabon. NNoVAE presents an approach that may be of value to other targeted sequencing panels, and is a method that will be used to survey Anopheles species diversity and Plasmodium transmission patterns through space and time on a large scale, with plans to analyse half a million mosquitoes in the next five years.
A review of selective indoor residual spraying for malaria control
Background Indoor residual spraying (IRS) is one of the most effective malaria control tools. However, its application has become limited to specific contexts due to the increased costs of IRS products and implementation programmes. Selective spraying—selective spray targeted to particular areas/surfaces of dwellings—has been proposed to maintain the malaria control and resistance-management benefits of IRS while decreasing the costs of the intervention. Methods A literature search was conducted to find (1) studies that assessed the resting behaviour of Anopheles mosquitoes and (2) studies that evaluated the impact of selective spraying on entomological and malaria outcomes. Additional articles were identified through hand searches of all references cited in articles identified through the initial search. A cost model was developed from PMI VectorLink IRS country programmes, and comparative cost analysis reports to describe the overall cost benefits of selective IRS. Results In some studies, there appeared to be a clear resting preference for certain Anopheles species in terms of the height at which they rested. However, for other species, and particularly the major African malaria vectors, a clear resting pattern was not detected. Furthermore, resting behaviour was not measured in a standardized way. For the selective spray studies that were assessed, there was a wide range of spray configurations, which complicates the comparison of methods. Many of these spray techniques were effective and resulted in reported 25–68% cost savings and reduced use of insecticide. The reported cost savings in the literature do not always consider all of the IRS implementation costs. Using the IRS cost model, these savings ranged from 17 to 29% for programs that targeted Anopheles spp. and 18–41% for programmes that targeted Aedes aegypti . Conclusions Resting behaviour is generally measured in a simplistic way; noting the resting spot of mosquitoes in the morning. This is likely an oversimplification, and there is a need for better monitoring of resting mosquitoes. This may improve the target surface for selective spray techniques, which could reduce the cost of IRS while maintaining its effectiveness. Reporting of cost savings should be calculated considering the entire implementation costs, and a cost model was provided for future calculations.
Behavioural and Electrophysiological Responses of Female Anopheles gambiae Mosquitoes to Volatiles from a Mango Bait
Attractive Toxic Sugar Baits (ATSB) are used in a “lure-and-kill” approach for management of the malaria vector Anopheles gambiae, but the active chemicals were previously unknown. Here we collected volatiles from a mango, Mangifera indica, juice bait which is used in ATSBs in Tanzania and tested mosquito responses. In a Y-tube olfactometer, female mosquitoes were attracted to the mango volatiles collected 24–48 h, 48–72 h and 72–96 h after preparing the bait but volatiles collected at 96–120 h were no longer attractive. Volatile analysis revealed emission of 23 compounds in different chemical classes including alcohols, aldehydes, alkanes, benzenoids, monoterpenes, sesquiterpenes and oxygenated terpenes. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of An. gambiae showed robust responses to 4 compounds: humulene, (E)-caryophyllene, terpinolene and myrcene. In olfactometer bioassays, mosquitoes were attracted to humulene and terpinolene. (E)-caryophyllene was marginally attractive while myrcene elicited an avoidance response with female mosquitoes. A blend of humulene, (E)-caryophyllene and terpinolene was highly attractive to females (P < 0.001) when tested against a solvent blank. Furthermore, there was no preference when this synthetic blend was offered as a choice against the natural sample. Our study has identified the key compounds from mango juice baits that attract An. gambiae and this information may help to improve the ATSBs currently used against malaria vectors.