Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Trois, Alessio"
Sort by:
Unlocking the Future of X-Ray Polarimetry with IXPE: Lessons Learned and Next Steps
This paper discusses issues encountered during the early development of the instrument on the Imaging X-ray Polarimetry Explorer (IXPE), a NASA–ASI Small Explorer mission launched on 9 December 2021. IXPE has observed about 100 sources, yielding meaningful polarimetry for most of them. An on-board calibration system mitigated most non-ideal detector behaviors during operations. Data from the on-board polarized and unpolarized X-ray sources are routinely ingested by the flight pipeline to correct the instrument response in a manner transparent to users. Based on its scientific return and payload health, the IXPE mission has been extended through 2028. The lessons learned are informing the design of next-generation X-ray polarimetry missions, as discussed elsewhere in these conferences.
Preliminary design and development of the module back-end electronics for the large area detector onboard the eXTP mission
The Large Area Detector (LAD) is one of the science payloads of the enhanced X-ray Timing and Polarimetry (eXTP) mission. The LAD is a spectral-timing instrument with a broad energy response, covering a range from 2 to 30 keV, a good timing resolution of better than 10 µs, and an expected energy resolution of 260 eV at 6 keV. The LAD consists of 640 large-area multi-anode Silicon Drift Detectors (SDDs). Given the large number of detectors, the LAD uses a modular design. Each module comprises sixteen detectors, and each detector is equipped with dedicated Front-End Electronics (FEE), interfacing with two separate Module Back-End Electronics (MBEEs). Each MBEE is designed to process the data from 1,792 anode channels in 8 FEEs (224 anode channels per FEE), performing the energy reconstruction and time tagging for X-ray events. The MBEE uses the European Field Programmable Gate Array (FPGA) from NanoXplore™, based on a pipeline concept, which reduces dead time, making the LAD suitable for higher flux X-ray detection, and it can handle a sustained flux of >500 mCrab and a continuous flux of >15 Crab for up to 300 minutes (Feroci et al. 2018 ). Additionally, the MBEE serves as the central hub for configuring the module’s electronics, including the FEEs, the Power Supply Unit (PSU), and the MBEE itself, and it is also responsible for collecting housekeeping data to monitor the system’s status. The prototype MBEE was designed, manufactured, and programmed with FPGA firmware using VHDL. The basic functional test was conducted in this paper, and the results indicated that the MBEE could be operated in different modes to perform the functions mentioned above. Analysis and testing show that it can transmit event packets-containing timing tag, event type, position ID, and energy information-at a baud rate of 2 Mbps with an event loss fraction of 1.5%.
High-Density Pixel Imaging Sensor Readout Electronics for Space Applications: A Design Overview
With the specialization of VLSI ASICs for front-end signal processing electronics, the customization of the control back-end electronics (BEE) has become critical to fully deploy the ASIC performance. In the context of space operations, with typical constraints on power and reliability, the design and qualification of such integrated systems present significant challenges. In this paper, we review the design and performance of the BEE systems after two years of operations in low Earth orbit (LEO); these systems read out the custom ASICs inside the gas pixel detectors, which are located at the heart of the imaging X-ray polarimetry explorer (IXPE), a NASA-ASI small explorer mission designed to measure X-ray polarization in the 2–8 keV energy range.
A multi-wavelength pipeline for pulsar observations
The Astronomical Observatory in Cagliari (OAC) is a growing facility with a group devoted to pulsar studies across the electromagnetic spectrum. Taking advantage of this expertise we have worked to provide a suite of multi-wavelength software and databases for the observations of pulsars and compact Galactic objects at the Sardinia Radio Telescope (SRT, Bolli et al. 2015, Prandoni et al. 2017).
STROBE-X High Energy Modular Array (HEMA)
The High Energy Modular Array (HEMA) is one of three instruments that compose the STROBE-X mission concept. The HEMA is a large-area, high-throughput non-imaging pointed instrument based on the Large Area Detector developed as part of the LOFT mission concept. It is designed for spectral timing measurements of a broad range of sources and provides a transformative increase in sensitivity to X-rays in the energy range of 2--30 keV compared to previous instruments, with an effective area of 3.4 m\\(^{2}\\) at 8.5 keV and an energy resolution of better than 300 eV at 6 keV in its nominal field of regard.
Equalizing the Pixel Response of the Imaging Photoelectric Polarimeter On-Board the IXPE Mission
The Gas Pixel Detector is a gas detector, sensitive to the polarization of X-rays, currently flying on-board IXPE - the first observatory dedicated to X-ray polarimetry. It detects X-rays and their polarization by imaging the ionization tracks generated by photoelectrons absorbed in the sensitive volume, and then reconstructing the initial direction of the photoelectrons. The primary ionization charge is multiplied and ultimately collected on a finely-pixellated ASIC specifically developed for X-ray polarimetry. The signal of individual pixels is processed independently and gain variations can be substantial, of the order of 20%. Such variations need to be equalized to correctly reconstruct the track shape, and therefore its polarization direction. The method to do such equalization is presented here and is based on the comparison between the mean charge of a pixel with respect to the other pixels for equivalent events. The method is shown to finely equalize the response of the detectors on board IXPE, allowing a better track reconstruction and energy resolution, and can in principle be applied to any imaging detector based on tracks.
AGILE Observations of GRB 220101A: A \New Year's Burst\ with an Exceptionally Huge Energy Release
We report the AGILE observations of GRB 220101A, which took place at the beginning of 1st January 2022 and was recognized as one of the most energetic gamma-ray bursts (GRBs) ever detected since their discovery. The AGILE satellite acquired interesting data concerning the prompt phase of this burst, providing an overall temporal and spectral description of the event in a wide energy range, from tens of keV to tens of MeV. Dividing the prompt emission into three main intervals, we notice an interesting spectral evolution, featuring a notable hardening of the spectrum in the central part of the burst. The average fluxes encountered in the different time intervals are relatively moderate, with respect to those of other remarkable bursts, and the overall fluence exhibits a quite ordinary value among the GRBs detected by MCAL. However, GRB 220101A is the second farthest event detected by AGILE, and the burst with the highest isotropic equivalent energy of the whole MCAL GRB sample, releasing E_iso=2.54x10^54 erg and exhibiting an isotropic luminosity of L_iso=2.34x10^52 erg/s (both in the 400 keV - 10 MeV energy range). We also analyzed the first 10^6 s of the afterglow phase, using the publicly available Swift XRT data, carrying out a theoretical analysis of the afterglow, based on the forward shock model. We notice that GRB 220101A is with high probability surrounded with a wind-like density medium, and that the energy carried by the initial shock shall be a fraction of the total E_iso, presumably near 50%.
Calibration of the IXPE focal plane X-ray polarimeters to polarized radiation
IXPE (Imaging X-ray Polarimetry Explorer) is a NASA Small Explorer mission -- in partnership with the Italian Space Agency (ASI) -- dedicated to X-ray polarimetry in the 2--8 keV energy band. The IXPE telescope comprises three grazing incidence mirror modules coupled to three detector units hosting each one a Gas Pixel Detector (GPD), a gas detector that allows measuring the polarization degree by using the photoelectric effect. A wide and accurate ground calibration was carried out on the IXPE Detector Units (DUs) at INAF-IAPS, in Italy, where a dedicated facility was set-up at this aim. In this paper, we present the results obtained from this calibration campaign to study the IXPE focal plane detector response to polarized radiation. In particular, we report on the modulation factor, which is the main parameter to estimate the sensitivity of a polarimeter.
An algorithm to calibrate and correct the response to unpolarized radiation of the X-ray polarimeter on board IXPE
The Gas Pixel Detector is an X-ray polarimeter to fly on-board IXPE and other missions. To correctly measure the source polarization, the response of IXPE's GPDs to unpolarized radiation has to be calibrated and corrected. In this paper we describe the way such response is measured with laboratory sources and the algorithm to apply such correction to the observations of celestial sources. The latter allows to correct the response to polarization of single photons, therefore allowing great flexibility in all the subsequent analysis. Our correction approach is tested against both monochromatic and non-monochromatic laboratory sources and with simulations, finding that it correctly retrieves the polarization up to the statistical limits of the planned IXPE observations.
Calibration of the IXPE instrument
IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission.